Distilling the Unknown to Unveil Certainty
- URL: http://arxiv.org/abs/2311.07975v2
- Date: Thu, 22 Aug 2024 02:58:00 GMT
- Title: Distilling the Unknown to Unveil Certainty
- Authors: Zhilin Zhao, Longbing Cao, Yixuan Zhang, Kun-Yu Lin, Wei-Shi Zheng,
- Abstract summary: Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained.
This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available.
- Score: 66.29929319664167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained, ensuring network robustness and reliability. This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available, given a standard network. This framework harnesses unknown OOD-sensitive knowledge from the standard network to craft a certain binary classifier adept at distinguishing between ID and OOD samples. To accomplish this, we introduce Confidence Amendment (CA), an innovative methodology that transforms an OOD sample into an ID one while progressively amending prediction confidence derived from the standard network. This approach enables the simultaneous synthesis of both ID and OOD samples, each accompanied by an adjusted prediction confidence, thereby facilitating the training of a binary classifier sensitive to OOD. Theoretical analysis provides bounds on the generalization error of the binary classifier, demonstrating the pivotal role of confidence amendment in enhancing OOD sensitivity. Extensive experiments spanning various datasets and network architectures confirm the efficacy of the proposed method in detecting OOD samples.
Related papers
- Semantic or Covariate? A Study on the Intractable Case of Out-of-Distribution Detection [70.57120710151105]
We provide a more precise definition of the Semantic Space for the ID distribution.
We also define the "Tractable OOD" setting which ensures the distinguishability of OOD and ID distributions.
arXiv Detail & Related papers (2024-11-18T03:09:39Z) - What If the Input is Expanded in OOD Detection? [77.37433624869857]
Out-of-distribution (OOD) detection aims to identify OOD inputs from unknown classes.
Various scoring functions are proposed to distinguish it from in-distribution (ID) data.
We introduce a novel perspective, i.e., employing different common corruptions on the input space.
arXiv Detail & Related papers (2024-10-24T06:47:28Z) - Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
Out-of-distribution (OOD) detection discerns OOD data where the predictor cannot make valid predictions as in-distribution (ID) data.
It is typically hard to collect real out-of-distribution (OOD) data for training a predictor capable of discerning OOD patterns.
We propose a data generation-based learning method named Auxiliary Task-based OOD Learning (ATOL) that can relieve the mistaken OOD generation.
arXiv Detail & Related papers (2023-11-06T16:26:52Z) - Classifier-head Informed Feature Masking and Prototype-based Logit
Smoothing for Out-of-Distribution Detection [27.062465089674763]
Out-of-distribution (OOD) detection is essential when deploying neural networks in the real world.
One main challenge is that neural networks often make overconfident predictions on OOD data.
We propose an effective post-hoc OOD detection method based on a new feature masking strategy and a novel logit smoothing strategy.
arXiv Detail & Related papers (2023-10-27T12:42:17Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
arXiv Detail & Related papers (2023-07-24T18:50:49Z) - Supervision Adaptation Balancing In-distribution Generalization and
Out-of-distribution Detection [36.66825830101456]
In-distribution (ID) and out-of-distribution (OOD) samples can lead to textitdistributional vulnerability in deep neural networks.
We introduce a novel textitsupervision adaptation approach to generate adaptive supervision information for OOD samples, making them more compatible with ID samples.
arXiv Detail & Related papers (2022-06-19T11:16:44Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
Deep neural networks are known to produce highly overconfident predictions on out-of-distribution (OOD) data.
In this paper we propose a novel method where from first principles we combine a certifiable OOD detector with a standard classifier into an OOD aware classifier.
In this way we achieve the best of two worlds: certifiably adversarially robust OOD detection, even for OOD samples close to the in-distribution, without loss in prediction accuracy and close to state-of-the-art OOD detection performance for non-manipulated OOD data.
arXiv Detail & Related papers (2021-06-08T11:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.