論文の概要: Enhancing Encrypted Internet Traffic Classification Through Advanced Data Augmentation Techniques
- arxiv url: http://arxiv.org/abs/2407.16539v1
- Date: Tue, 23 Jul 2024 14:49:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 16:55:42.950704
- Title: Enhancing Encrypted Internet Traffic Classification Through Advanced Data Augmentation Techniques
- Title(参考訳): 高度なデータ拡張技術による暗号化されたインターネットトラフィック分類の強化
- Authors: Yehonatan Zion, Porat Aharon, Ran Dubin, Amit Dvir, Chen Hajaj,
- Abstract要約: 本稿では,暗号化されたインターネットトラフィックを分類する上での課題について述べる。
実データからデータを生成するための2つのデータ拡張(DA)手法を提案する。
本手法は,暗号化されたトラフィック分類モデルを大幅に強化することを示す。
- 参考スコア(独自算出の注目度): 9.035212370386846
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing popularity of online services has made Internet Traffic Classification a critical field of study. However, the rapid development of internet protocols and encryption limits usable data availability. This paper addresses the challenges of classifying encrypted internet traffic, focusing on the scarcity of open-source datasets and limitations of existing ones. We propose two Data Augmentation (DA) techniques to synthetically generate data based on real samples: Average augmentation and MTU augmentation. Both augmentations are aimed to improve the performance of the classifier, each from a different perspective: The Average augmentation aims to increase dataset size by generating new synthetic samples, while the MTU augmentation enhances classifier robustness to varying Maximum Transmission Units (MTUs). Our experiments, conducted on two well-known academic datasets and a commercial dataset, demonstrate the effectiveness of these approaches in improving model performance and mitigating constraints associated with limited and homogeneous datasets. Our findings underscore the potential of data augmentation in addressing the challenges of modern internet traffic classification. Specifically, we show that our augmentation techniques significantly enhance encrypted traffic classification models. This improvement can positively impact user Quality of Experience (QoE) by more accurately classifying traffic as video streaming (e.g., YouTube) or chat (e.g., Google Chat). Additionally, it can enhance Quality of Service (QoS) for file downloading activities (e.g., Google Docs).
- Abstract(参考訳): オンラインサービスの人気が高まっているため、インターネットトラフィック分類は重要な研究分野となっている。
しかし、インターネットプロトコルと暗号化の急速な発展により、利用可能なデータの可用性は制限される。
本稿では、オープンソースのデータセットの不足と既存のトラフィックの制限に着目し、暗号化されたインターネットトラフィックを分類することの課題に対処する。
本研究では,データ拡張(DA)手法を2つ提案し,実データに基づいてデータを生成する。
平均的な拡張は、新しい合成サンプルを生成することによってデータセットのサイズを増やすことを目的としており、MTUの拡張は、様々な最大伝送ユニット(MTU)に分類器の堅牢性を高める。
2つの有名な学術的データセットと商業的データセットを用いて実験を行い、モデル性能の向上と制約の緩和におけるこれらのアプローチの有効性を実証した。
我々の研究結果は、現代のインターネットトラフィック分類の課題に対処する上で、データ拡張の可能性を強調している。
具体的には,この拡張技術により,暗号化されたトラフィック分類モデルが大幅に向上することを示す。
この改善は、トラフィックをより正確にビデオストリーミング(例:YouTube)やチャット(例:Google Chat)に分類することで、ユーザのQoE(Quality of Experience)に影響を与える可能性がある。
さらに、ファイルダウンロードアクティビティ(Google Docsなど)のクオリティ・オブ・サービス(QoS)も強化できる。
関連論文リスト
- Generative AI for Data Augmentation in Wireless Networks: Analysis, Applications, and Case Study [59.780800481241066]
Generative Artificial Intelligence (GenAI) は、無線データ拡張の効果的な代替手段である。
本稿では、無線ネットワークにおけるGenAI駆動型データ拡張の可能性と有効性について考察する。
本稿では,Wi-Fiジェスチャー認識のための一般化拡散モデルに基づくデータ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-13T05:15:25Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - A Comparative Study on Enhancing Prediction in Social Network Advertisement through Data Augmentation [0.6707149143800017]
本研究では,ソーシャルネットワーク広告データの生成的拡張フレームワークを提示し,検討する。
データ拡張のための3つの生成モデル - GAN(Generative Adversarial Networks)、VAE(variantal Autoencoders)、Gaussian Mixture Models(GMM) - を探索する。
論文 参考訳(メタデータ) (2024-04-22T01:16:11Z) - Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lensは、T5アーキテクチャを活用して、大規模な未ラベルデータから事前訓練された表現を学習するネットワークトラフィックの基礎モデルである。
Masked Span Prediction(MSP)、Packet Order Prediction(POP)、Homologous Traffic Prediction(HTP)の3つの異なるタスクを組み合わせた新しい損失を設計する。
論文 参考訳(メタデータ) (2024-02-06T02:45:13Z) - A Survey on Data Augmentation in Large Model Era [16.05117556207015]
大きな言語と拡散モデルを含む大きなモデルは、人間レベルの知能を近似する上で非常に有望である。
これらのモデルへの継続的な更新により、既存の高品質なデータの貯水池はすぐに枯渇する可能性がある。
本稿では,大規模モデル駆動型データ拡張手法について概観する。
論文 参考訳(メタデータ) (2024-01-27T14:19:33Z) - Data Augmentation for Traffic Classification [54.92823760790628]
Data Augmentation (DA) はコンピュータビジョン(CV)と自然言語処理(NLP)に広く採用されている技術である。
DAはネットワークのコンテキスト、特にトラフィック分類(TC)タスクにおいて、牽引力を得るのに苦労しています。
論文 参考訳(メタデータ) (2024-01-19T15:25:09Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
データ拡張の背景、レビューされたデータ拡張技術の新しい包括的分類法、および各技術の強さと弱点(可能ならば)を提供する。
また、画像分類、オブジェクト検出、セマンティックセグメンテーションなどの3つの一般的なコンピュータビジョンタスクに対して、データ拡張効果の総合的な結果を提供する。
論文 参考訳(メタデータ) (2023-01-07T11:37:32Z) - Toward Adaptive Semantic Communications: Efficient Data Transmission via
Online Learned Nonlinear Transform Source-Channel Coding [11.101344530143303]
深層学習モデルの過剰適合性を利用したオンライン学習型ジョイントソースとチャネルコーディング手法を提案する。
具体的には,市販の事前訓練型モデルを軽量なオンライン方式で展開し,ソースデータと環境領域の分散シフトに適応させる。
私たちはオーバーフィットの概念を極端に捉え、モデルや表現を個々のデータやチャネル状態インスタンスに適応させる実装フレンドリな一連のメソッドを提案します。
論文 参考訳(メタデータ) (2022-11-08T16:00:27Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
データ拡張ポリシーの学習方法は、保持データを必要とし、二段階最適化の問題に基づいている。
我々のアプローチは、現代の自動データ拡張技術よりも訓練が簡単で高速であることを示す。
論文 参考訳(メタデータ) (2022-02-04T14:12:31Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
セマンティックイメージセグメンテーションに関する最初の研究を行い、textitSmartAugment と textitSmartSamplingAugment の2つの新しいアプローチを紹介した。
SmartAugmentはベイジアン最適化を使用して、拡張戦略の豊富なスペースを探索し、私たちが考慮しているすべてのセマンティックセグメンテーションタスクにおいて、新しい最先端のパフォーマンスを達成する。
SmartSamplingAugmentは、固定的な拡張戦略を備えたシンプルなパラメータフリーのアプローチで、既存のリソース集約型アプローチとパフォーマンスを競い合い、安価な最先端データ拡張手法を上回っている。
論文 参考訳(メタデータ) (2021-10-31T13:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。