Learning to Play Foosball: System and Baselines
- URL: http://arxiv.org/abs/2407.16606v1
- Date: Tue, 23 Jul 2024 16:11:08 GMT
- Title: Learning to Play Foosball: System and Baselines
- Authors: Janosch Moos, Cedric Derstroff, Niklas Schröder, Debora Clever,
- Abstract summary: This work stages Foosball as a versatile platform for advancing scientific research, particularly in the realm of robot learning.
We present an automated Foosball table along with its corresponding simulated counterpart, showcasing a diverse range of challenges.
To transform our physical Foosball table into a research-friendly system, we augmented it with a 2 degrees of freedom kinematic chain to control the goalkeeper rod.
- Score: 0.09642500063568188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work stages Foosball as a versatile platform for advancing scientific research, particularly in the realm of robot learning. We present an automated Foosball table along with its corresponding simulated counterpart, showcasing a diverse range of challenges through example tasks within the Foosball environment. Initial findings are shared using a simple baseline approach. Foosball constitutes a versatile learning environment with the potential to yield cutting-edge research in various fields of artificial intelligence and machine learning, notably robust learning, while also extending its applicability to industrial robotics and automation setups. To transform our physical Foosball table into a research-friendly system, we augmented it with a 2 degrees of freedom kinematic chain to control the goalkeeper rod as an initial setup with the intention to be extended to the full game as soon as possible. Our experiments reveal that a realistic simulation is essential for mastering complex robotic tasks, yet translating these accomplishments to the real system remains challenging, often accompanied by a performance decline. This emphasizes the critical importance of research in this direction. In this concern, we spotlight the automated Foosball table as an invaluable tool, possessing numerous desirable attributes, to serve as a demanding learning environment for advancing robotics and automation research.
Related papers
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
We organized the Robot Air Hockey Challenge at the NeurIPS 2023 conference.
We focus on practical challenges in robotics, such as the sim-to-real gap, low-level control issues, safety problems, real-time requirements, and the limited availability of real-world data.
Results show that solutions combining learning-based approaches with prior knowledge outperform those relying solely on data when real-world deployment is challenging.
arXiv Detail & Related papers (2024-11-08T17:20:47Z) - Learning Robot Soccer from Egocentric Vision with Deep Reinforcement Learning [17.906144781244336]
We train end-to-end robot soccer policies with fully onboard computation and sensing via egocentric RGB vision.
This paper constitutes a first demonstration of end-to-end training for multi-agent robot soccer.
arXiv Detail & Related papers (2024-05-03T18:41:13Z) - RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation [68.70755196744533]
RoboGen is a generative robotic agent that automatically learns diverse robotic skills at scale via generative simulation.
Our work attempts to extract the extensive and versatile knowledge embedded in large-scale models and transfer them to the field of robotics.
arXiv Detail & Related papers (2023-11-02T17:59:21Z) - Robotic Table Tennis: A Case Study into a High Speed Learning System [30.30242337602385]
We present a real-world robotic learning system capable of hundreds of table tennis rallies with a human.
This system puts together a highly optimized perception subsystem, a high-speed low-latency robot controller, and a simulation paradigm that can prevent damage in the real world.
arXiv Detail & Related papers (2023-09-06T18:56:20Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
We propose dual-arm settings as platforms for robot learning.
We will discuss the potential benefits of this setup as well as the challenges and research directions that can be pursued.
arXiv Detail & Related papers (2021-10-15T12:51:57Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - rSoccer: A Framework for Studying Reinforcement Learning in Small and
Very Small Size Robot Soccer [0.0]
This article introduces an open-source simulator for the IEEE Very Small Size Soccer and the Small Size League optimized for reinforcement learning experiments.
We also propose a framework for creating OpenAI Gym environments with a set of benchmarks tasks for evaluating single-agent and multi-agent robot soccer skills.
arXiv Detail & Related papers (2021-06-15T01:30:21Z) - Sim2Real for Peg-Hole Insertion with Eye-in-Hand Camera [58.720142291102135]
We use a simulator to learn the peg-hole insertion problem and then transfer the learned model to the real robot.
We show that the transferred policy, which only takes RGB-D and joint information (proprioception) can perform well on the real robot.
arXiv Detail & Related papers (2020-05-29T05:58:54Z) - The Ingredients of Real-World Robotic Reinforcement Learning [71.92831985295163]
We discuss the elements that are needed for a robotic learning system that can continually and autonomously improve with data collected in the real world.
We propose a particular instantiation of such a system, using dexterous manipulation as our case study.
We demonstrate that our complete system can learn without any human intervention, acquiring a variety of vision-based skills with a real-world three-fingered hand.
arXiv Detail & Related papers (2020-04-27T03:36:10Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIEN is a realistic and physics-rich simulated environment that hosts a large-scale set for articulated objects.
We evaluate state-of-the-art vision algorithms for part detection and motion attribute recognition as well as demonstrate robotic interaction tasks.
arXiv Detail & Related papers (2020-03-19T00:11:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.