KAN or MLP: A Fairer Comparison
- URL: http://arxiv.org/abs/2407.16674v2
- Date: Sat, 17 Aug 2024 15:20:31 GMT
- Title: KAN or MLP: A Fairer Comparison
- Authors: Runpeng Yu, Weihao Yu, Xinchao Wang,
- Abstract summary: This paper offers a fairer and more comprehensive comparison of KAN and models across various tasks.
We control the number of parameters and FLOPs to compare the performance of KAN and representation.
We find that KAN's issue is more severe than that of forgetting in a standard class-incremental continual learning setting.
- Score: 63.794304207664176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper does not introduce a novel method. Instead, it offers a fairer and more comprehensive comparison of KAN and MLP models across various tasks, including machine learning, computer vision, audio processing, natural language processing, and symbolic formula representation. Specifically, we control the number of parameters and FLOPs to compare the performance of KAN and MLP. Our main observation is that, except for symbolic formula representation tasks, MLP generally outperforms KAN. We also conduct ablation studies on KAN and find that its advantage in symbolic formula representation mainly stems from its B-spline activation function. When B-spline is applied to MLP, performance in symbolic formula representation significantly improves, surpassing or matching that of KAN. However, in other tasks where MLP already excels over KAN, B-spline does not substantially enhance MLP's performance. Furthermore, we find that KAN's forgetting issue is more severe than that of MLP in a standard class-incremental continual learning setting, which differs from the findings reported in the KAN paper. We hope these results provide insights for future research on KAN and other MLP alternatives. Project link: https://github.com/yu-rp/KANbeFair
Related papers
- On the expressiveness and spectral bias of KANs [17.42614039265962]
KANs were recently proposed as a potential alternative to the prevalent architectural backbone of many deep learning models, the multi-layer perceptron (MLP)
KANs have seen success in various tasks of AI for science, with their empirical efficiency and accuracy demostrated in function regression, PDE solving, and many more scientific problems.
arXiv Detail & Related papers (2024-10-02T17:57:38Z) - KAN v.s. MLP for Offline Reinforcement Learning [4.3621896506713185]
Kolmogorov-Arnold Networks (KAN) is an emerging neural network architecture in machine learning.
In this paper, we explore the incorporation of KAN into the actor and critic networks for offline reinforcement learning.
arXiv Detail & Related papers (2024-09-15T07:52:44Z) - MLPs Learn In-Context on Regression and Classification Tasks [28.13046236900491]
In-context learning (ICL) is often assumed to be a unique hallmark of Transformer models.
We demonstrate that multi-layer perceptrons (MLPs) can also learn in-context.
arXiv Detail & Related papers (2024-05-24T15:04:36Z) - KAN: Kolmogorov-Arnold Networks [16.782018138008578]
We propose Kolmogorov-Arnold Networks (KANs) as promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs have learnable activation functions on edges ("weights")
We show that this seemingly simple change makes KANs outperform neurals in terms of accuracy and interpretability.
arXiv Detail & Related papers (2024-04-30T17:58:29Z) - Model-tuning Via Prompts Makes NLP Models Adversarially Robust [97.02353907677703]
We show surprising gains in adversarial robustness enjoyed by Model-tuning Via Prompts (MVP)
MVP improves performance against adversarial substitutions by an average of 8% over standard methods.
We also conduct ablations to investigate the mechanism underlying these gains.
arXiv Detail & Related papers (2023-03-13T17:41:57Z) - MLP Architectures for Vision-and-Language Modeling: An Empirical Study [91.6393550858739]
We initiate the first empirical study on the use of architectures for vision-and-featured (VL) fusion.
We find that without pre-training, usings for multimodal fusion has a noticeable performance gap compared to transformers.
Instead of heavy multi-head attention, adding tiny one-head attention to encoders is sufficient to achieve comparable performance to transformers.
arXiv Detail & Related papers (2021-12-08T18:26:19Z) - Sparse MLP for Image Recognition: Is Self-Attention Really Necessary? [65.37917850059017]
We build an attention-free network called sMLPNet.
For 2D image tokens, sMLP applies 1D along the axial directions and the parameters are shared among rows or columns.
When scaling up to 66M parameters, sMLPNet achieves 83.4% top-1 accuracy, which is on par with the state-of-the-art Swin Transformer.
arXiv Detail & Related papers (2021-09-12T04:05:15Z) - AS-MLP: An Axial Shifted MLP Architecture for Vision [50.11765148947432]
An Axial Shifted architecture (AS-MLP) is proposed in this paper.
By axially shifting channels of the feature map, AS-MLP is able to obtain the information flow from different directions.
With the proposed AS-MLP architecture, our model obtains 83.3% Top-1 accuracy with 88M parameters and 15.2 GFLOPs on the ImageNet-1K dataset.
arXiv Detail & Related papers (2021-07-18T08:56:34Z) - Rethinking Token-Mixing MLP for MLP-based Vision Backbone [34.47616917228978]
We propose an improved structure as termed Circulant Channel-Specific (CCS) token-mixing benchmark, which is spatial-invariant and channel-specific.
It takes fewer parameters but achieves higher classification accuracy on ImageNet1K.
arXiv Detail & Related papers (2021-06-28T17:59:57Z) - MLP-Mixer: An all-MLP Architecture for Vision [93.16118698071993]
We present-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs).
Mixer attains competitive scores on image classification benchmarks, with pre-training and inference comparable to state-of-the-art models.
arXiv Detail & Related papers (2021-05-04T16:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.