Explanation Regularisation through the Lens of Attributions
- URL: http://arxiv.org/abs/2407.16693v2
- Date: Thu, 26 Sep 2024 09:27:30 GMT
- Title: Explanation Regularisation through the Lens of Attributions
- Authors: Pedro Ferreira, Ivan Titov, Wilker Aziz,
- Abstract summary: Explanation regularisation (ER) has been introduced as a way to guide text classifiers to form their predictions.
This is achieved by introducing an auxiliary explanation loss that measures how well the output of an input attribution technique agrees with human-annotated rationales.
Previous work has under-explored the impact of guidance on that reliance, particularly when reliance is measured using attribution techniques different from those used to guide the model.
- Score: 30.68740512996253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explanation regularisation (ER) has been introduced as a way to guide text classifiers to form their predictions relying on input tokens that humans consider plausible. This is achieved by introducing an auxiliary explanation loss that measures how well the output of an input attribution technique for the model agrees with human-annotated rationales. The guidance appears to benefit performance in out-of-domain (OOD) settings, presumably due to an increased reliance on "plausible" tokens. However, previous work has under-explored the impact of guidance on that reliance, particularly when reliance is measured using attribution techniques different from those used to guide the model. In this work, we seek to close this gap, and also explore the relationship between reliance on plausible features and OOD performance. We find that the connection between ER and the ability of a classifier to rely on plausible features has been overstated and that a stronger reliance on plausible tokens does not seem to be the cause for OOD improvements.
Related papers
- I Predict Therefore I Am: Is Next Token Prediction Enough to Learn Human-Interpretable Concepts from Data? [76.15163242945813]
Large language models (LLMs) have led many to conclude that they exhibit a form of intelligence.<n>We introduce a novel generative model that generates tokens on the basis of human-interpretable concepts represented as latent discrete variables.
arXiv Detail & Related papers (2025-03-12T01:21:17Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - Ladder-of-Thought: Using Knowledge as Steps to Elevate Stance Detection [73.31406286956535]
We introduce the Ladder-of-Thought (LoT) for the stance detection task.
LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced.
Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.
arXiv Detail & Related papers (2023-08-31T14:31:48Z) - Goodhart's Law Applies to NLP's Explanation Benchmarks [57.26445915212884]
We critically examine two sets of metrics: the ERASER metrics (comprehensiveness and sufficiency) and the EVAL-X metrics.
We show that we can inflate a model's comprehensiveness and sufficiency scores dramatically without altering its predictions or explanations on in-distribution test inputs.
Our results raise doubts about the ability of current metrics to guide explainability research, underscoring the need for a broader reassessment of what precisely these metrics are intended to capture.
arXiv Detail & Related papers (2023-08-28T03:03:03Z) - Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making [10.049226270783562]
We study the effects of feature-based explanations on distributive fairness of AI-assisted decisions.
Our findings show that explanations influence fairness perceptions, which, in turn, relate to humans' tendency to adhere to AI recommendations.
arXiv Detail & Related papers (2022-09-23T19:10:59Z) - Be Your Own Neighborhood: Detecting Adversarial Example by the
Neighborhood Relations Built on Self-Supervised Learning [64.78972193105443]
This paper presents a novel AE detection framework, named trustworthy for predictions.
performs the detection by distinguishing the AE's abnormal relation with its augmented versions.
An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the label.
arXiv Detail & Related papers (2022-08-31T08:18:44Z) - Exploiting the Relationship Between Kendall's Rank Correlation and
Cosine Similarity for Attribution Protection [21.341303776931532]
We first show that the expected Kendall's rank correlation is positively correlated to cosine similarity and then indicate that the direction of attribution is the key to attribution robustness.
Our analysis further exposes that IGR encourages neurons with the same activation states for natural samples and the corresponding perturbed samples, which is shown to induce robustness to gradient-based attribution methods.
arXiv Detail & Related papers (2022-05-15T13:08:50Z) - Direct Advantage Estimation [63.52264764099532]
We show that the expected return may depend on the policy in an undesirable way which could slow down learning.
We propose the Direct Advantage Estimation (DAE), a novel method that can model the advantage function and estimate it directly from data.
If desired, value functions can also be seamlessly integrated into DAE and be updated in a similar way to Temporal Difference Learning.
arXiv Detail & Related papers (2021-09-13T16:09:31Z) - Towards Unifying Feature Attribution and Counterfactual Explanations:
Different Means to the Same End [17.226134854746267]
We present a method to generate feature attribution explanations from a set of counterfactual examples.
We show how counterfactual examples can be used to evaluate the goodness of an attribution-based explanation in terms of its necessity and sufficiency.
arXiv Detail & Related papers (2020-11-10T05:41:43Z) - Self-Attention Attribution: Interpreting Information Interactions Inside
Transformer [89.21584915290319]
We propose a self-attention attribution method to interpret the information interactions inside Transformer.
We show that the attribution results can be used as adversarial patterns to implement non-targeted attacks towards BERT.
arXiv Detail & Related papers (2020-04-23T14:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.