論文の概要: A study of animal action segmentation algorithms across supervised, unsupervised, and semi-supervised learning paradigms
- arxiv url: http://arxiv.org/abs/2407.16727v1
- Date: Tue, 23 Jul 2024 14:22:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 15:54:04.456139
- Title: A study of animal action segmentation algorithms across supervised, unsupervised, and semi-supervised learning paradigms
- Title(参考訳): 教師なし・教師なし・半教師付き学習パラダイムにおける動物行動セグメンテーションアルゴリズムの研究
- Authors: Ari Blau, Evan S Schaffer, Neeli Mishra, Nathaniel J Miska, The International Brain Laboratory, Liam Paninski, Matthew R Whiteway,
- Abstract要約: 本稿では,教師付き深層ニューラルネットワークと教師なしグラフィカルモデルとのギャップを埋める半教師付きアクションセグメンテーションモデルを提案する。
時間的情報を加えることで、完全に管理された時間的畳み込みネットワークが、すべてのデータセットで監視されたメトリクスで最高のパフォーマンスを発揮することが分かりました。
- 参考スコア(独自算出の注目度): 3.597220870252727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Action segmentation of behavioral videos is the process of labeling each frame as belonging to one or more discrete classes, and is a crucial component of many studies that investigate animal behavior. A wide range of algorithms exist to automatically parse discrete animal behavior, encompassing supervised, unsupervised, and semi-supervised learning paradigms. These algorithms -- which include tree-based models, deep neural networks, and graphical models -- differ widely in their structure and assumptions on the data. Using four datasets spanning multiple species -- fly, mouse, and human -- we systematically study how the outputs of these various algorithms align with manually annotated behaviors of interest. Along the way, we introduce a semi-supervised action segmentation model that bridges the gap between supervised deep neural networks and unsupervised graphical models. We find that fully supervised temporal convolutional networks with the addition of temporal information in the observations perform the best on our supervised metrics across all datasets.
- Abstract(参考訳): 行動ビデオのアクションセグメンテーションは、各フレームを1つ以上の個別のクラスに属するものとしてラベル付けするプロセスであり、動物行動を研究する多くの研究において重要な要素である。
教師なし、教師なし、半教師なしの学習パラダイムを含む、離散的な動物の行動を自動的に解析するための幅広いアルゴリズムが存在する。
木ベースのモデル、ディープニューラルネットワーク、グラフィカルモデルを含むこれらのアルゴリズムは、データの構造と仮定に大きく異なる。複数の種にまたがる4つのデータセット(フライ、マウス、ヒューマン)を使用して、これらのアルゴリズムのアウトプットが、手動で注釈付けされた関心の振る舞いとどのように一致しているかを体系的に研究する。
その過程で、教師付き深層ニューラルネットワークと教師なしグラフィカルモデルとのギャップを埋める半教師付きアクションセグメンテーションモデルを導入する。
観測結果に時間的情報を加えることで、全データセットにわたる教師付きメトリクスにおいて、完全に教師付き時間的畳み込みネットワークが最善を尽くすことがわかった。
関連論文リスト
- Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
低撮影能力のためのコントラスト学習、クラスタリング、マスク付き画像モデリングなど、さまざまな自己教師付きプレテキストタスクについて検討する。
マスク画像モデリングとクラスタリングの両方をプリテキストタスクとして含むフレームワークを導入する。
実規模データセット上でモデルをテストした場合,マルチクラス分類,マルチラベル分類,セマンティックセマンティックセグメンテーションにおける性能向上を示す。
論文 参考訳(メタデータ) (2024-06-25T10:56:03Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
本稿では,システムレベルの状態を全体像から直接予測するディープ・ネットワーク・モデルを提案する。
結果の予測モデルは、人間の理解した予測モデルに基づいていないため、説明モジュールを使用する。
これは、行動生態学における人工知能の例である。
論文 参考訳(メタデータ) (2021-08-20T22:50:41Z) - Learning interaction rules from multi-animal trajectories via augmented
behavioral models [8.747278400158718]
グランガー因果関係は観測された時系列データから相互作用を分析するための実践的なフレームワークである。
この枠組みは動物行動における生成過程の構造を無視している。
マルチアニマル軌道からグラガー因果関係を学習するための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-12T11:33:56Z) - Unsupervised Discovery of the Long-Tail in Instance Segmentation Using
Hierarchical Self-Supervision [3.841232411073827]
本稿では,インスタンスセグメンテーションにおける長尾カテゴリの非監視的発見を行う手法を提案する。
我々のモデルは、一般的なカテゴリよりも新しくよりきめ細かなオブジェクトを発見できる。
本モデルでは,LVISにおいて,教師付きおよび部分教師付き手法と比較して,競争力のある定量的結果が得られることを示す。
論文 参考訳(メタデータ) (2021-04-02T22:05:03Z) - Unsupervised Speech Representation Learning for Behavior Modeling using
Triplet Enhanced Contextualized Networks [28.957236790411585]
本研究では,対話における人間の行動の定常的特性を利用して,音声から行動情報を抽出する表現学習手法を提案する。
本稿では,エンコーダ・デコーダをベースとしたDeep Contextualized Network (DCN) と,動作コンテキストをキャプチャするTriplet-Enhanced DCN (TE-DCN) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-01T22:44:23Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
シーングラフモデルは通常、大量のラベル付きデータを人間のアノテーションで教師付き学習する必要がある。
本研究では,人間ラベルデータを用いずにシーングラフモデルを訓練できる視覚関係学習の新しいパラダイムである視覚遠方監視を提案する。
包括的な実験結果から、我々の遠隔監視モデルは、弱い監督と半監督のベースラインよりも優れています。
論文 参考訳(メタデータ) (2021-03-29T06:35:24Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Learning to Abstract and Predict Human Actions [60.85905430007731]
ビデオにおける人間の活動の階層構造をモデル化し,行動予測におけるそのような構造の効果を実証する。
イベントの部分的階層を観察し、その構造を複数の抽象化レベルで将来の予測にロールアウトすることで、人間の活動の構造を学習できる階層型ニューラルネットワークであるHierarchical-Refresher-Anticipatorを提案する。
論文 参考訳(メタデータ) (2020-08-20T23:57:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。