Distributed Difference of Convex Optimization
- URL: http://arxiv.org/abs/2407.16728v1
- Date: Tue, 23 Jul 2024 14:41:32 GMT
- Title: Distributed Difference of Convex Optimization
- Authors: Vivek Khatana, Murti V. Salapaka,
- Abstract summary: A class of distributed problems involvingn$ agents with the local objective function at every agenti by the difference of the difference of $-difference on $-f_i$ and $-f_i$ are presented.
The DDC-Consensus algorithm is developed to solve the non-regularized distributed squares problem.
- Score: 1.2661010067882734
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this article, we focus on solving a class of distributed optimization problems involving $n$ agents with the local objective function at every agent $i$ given by the difference of two convex functions $f_i$ and $g_i$ (difference-of-convex (DC) form), where $f_i$ and $g_i$ are potentially nonsmooth. The agents communicate via a directed graph containing $n$ nodes. We create smooth approximations of the functions $f_i$ and $g_i$ and develop a distributed algorithm utilizing the gradients of the smooth surrogates and a finite-time approximate consensus protocol. We term this algorithm as DDC-Consensus. The developed DDC-Consensus algorithm allows for non-symmetric directed graph topologies and can be synthesized distributively. We establish that the DDC-Consensus algorithm converges to a stationary point of the nonconvex distributed optimization problem. The performance of the DDC-Consensus algorithm is evaluated via a simulation study to solve a nonconvex DC-regularized distributed least squares problem. The numerical results corroborate the efficacy of the proposed algorithm.
Related papers
- Rate Analysis of Coupled Distributed Stochastic Approximation for Misspecified Optimization [0.552480439325792]
We consider an $n$ agents distributed optimization problem with imperfect information characterized in a parametric sense.
We propose a coupled distributed approximation algorithm, in which every agent updates the current beliefs of its unknown parameter.
We quantitatively characterize the factors that affect the algorithm performance, and prove that the mean-squared error of the decision variable is bounded by $mathcalO(frac1nk)+mathcalOleft(frac1sqrtn (1-rho_w)right)frac1k1.5
arXiv Detail & Related papers (2024-04-21T14:18:49Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Convergence Analysis of Nonconvex Distributed Stochastic Zeroth-order
Coordinate Method [3.860616339202303]
This paper investigates the distributed non optimization problem of minimizing a global cost function formed by the summation of $ZOn$ local cost functions.
Agents approximate their own ZO coordinate method to solve the problem.
arXiv Detail & Related papers (2021-03-24T03:07:46Z) - Distributed Stochastic Consensus Optimization with Momentum for
Nonconvex Nonsmooth Problems [45.88640334610308]
This paper presents a new distributed optimization algorithm for non-smooth problems.
We show that the proposed algorithm can achieve an overcal communication.
Experiments are presented to illustrate the effectiveness of the proposed algorithms.
arXiv Detail & Related papers (2020-11-10T13:12:21Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - S-ADDOPT: Decentralized stochastic first-order optimization over
directed graphs [16.96562173221624]
Decentralized convex optimization is proposed to minimize a sum of smooth and strongly cost functions when the functions are distributed over a directed network nodes.
In particular, we propose thetextbftextttS-ADDOPT algorithm that assumes a first-order oracle at each node.
For decaying step-sizes$mathcalO (1/k)$, we show thattextbfttS-ADDOPT reaches the exact solution subly at$mathcalO (1/k)$ and its convergence is networkally-independent
arXiv Detail & Related papers (2020-05-15T21:14:22Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z) - Efficient algorithms for multivariate shape-constrained convex
regression problems [9.281671380673306]
We prove that the least squares estimator is computable via solving a constrained convex programming (QP) problem with $(n+1)d$ variables and at least $n(n-1)$ linear inequality constraints.
For solving the generally very large-scale convex QP, we design two efficient algorithms, one is the symmetric Gauss-Seidel based alternating direction method of multipliers (tt sGS-ADMM), and the other is the proximal augmented Lagrangian method (tt pALM) with the subproblems solved by the semismooth Newton method (t
arXiv Detail & Related papers (2020-02-26T11:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.