論文の概要: VisMin: Visual Minimal-Change Understanding
- arxiv url: http://arxiv.org/abs/2407.16772v2
- Date: Wed, 22 Jan 2025 17:42:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:52:55.304557
- Title: VisMin: Visual Minimal-Change Understanding
- Title(参考訳): VisMin: Visual Minimal-Change Understanding
- Authors: Rabiul Awal, Saba Ahmadi, Le Zhang, Aishwarya Agrawal,
- Abstract要約: Visual Minimal-Change Understanding (VisMin)と呼ばれる新しい挑戦的なベンチマークを導入する。
VisMinは、2つの画像と2つのキャプションによって正しい画像キャプチャマッチを予測するモデルを必要とする。
我々は,大規模言語モデルと拡散モデルを用いた自動フレームワークを構築し,続いて人間のアノテーションによる厳密な4段階の検証プロセスを構築した。
- 参考スコア(独自算出の注目度): 7.226130826257802
- License:
- Abstract: Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). Existing benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar captions given an image. In this paper, we introduce a new, challenging benchmark termed Visual Minimal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. The image pair and caption pair contain minimal changes, i.e., only one aspect changes at a time from among the following: object, attribute, count, and spatial relation. These changes test the models' understanding of objects, attributes (such as color, material, shape), counts, and spatial relationships between objects. We built an automatic framework using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. We also generate a large-scale training dataset to finetune CLIP and Idefics2, showing significant improvements in fine-grained understanding across benchmarks and in CLIP's general image-text alignment. We release all resources, including the benchmark, training data, and finetuned model checkpoints, at https://vismin.net/.
- Abstract(参考訳): オブジェクト、属性、オブジェクト間の関係のきめ細かい理解は、視覚言語モデル(VLM)にとって不可欠である。
既存のベンチマークは主に、画像が与えられた2つの非常に類似したキャプションを区別するVLMの能力を評価することに焦点を当てている。
本稿では,2つの画像と2つのキャプションに対して,正しい画像キャプチャマッチングをモデルに求めるVisual Minimal-Change Understanding (VisMin) という,新しい挑戦的なベンチマークを提案する。
画像対とキャプション対は、最小限の変更、すなわち、オブジェクト、属性、カウント、空間関係のうち、一度に1つのアスペクトしか変化しない。
これらの変更は、モデルがオブジェクト、属性(色、材料、形状)、カウント、オブジェクト間の空間的関係について理解することをテストする。
我々は,大規模言語モデルと拡散モデルを用いた自動フレームワークを構築し,続いて人間のアノテーションによる厳密な4段階の検証プロセスを構築した。
経験的実験により、現在のVLMは空間的関係や数え上げ能力の理解において顕著な欠陥を示すことが明らかとなった。
また、CLIPとIdefics2を微調整する大規模なトレーニングデータセットも生成し、ベンチマークやCLIPの一般的な画像テキストアライメントにおける詳細な理解を大幅に改善した。
ベンチマーク、トレーニングデータ、微調整されたモデルチェックポイントを含むすべてのリソースをhttps://vismin.net/.com/でリリースします。
関連論文リスト
- Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
VLM(Vision-Language Models)は、様々な視覚タスクにまたがる顕著な能力を示す。
現在のVLMには基本的な認知能力がなく、コンテキストを考慮し、シーン内のオブジェクトをローカライズすることを学ぶ。
この研究は、VLMのパーソナライズされた数ショットのローカライゼーションを探索し、ベンチマークした初めてのものである。
論文 参考訳(メタデータ) (2024-11-20T13:34:22Z) - ResVG: Enhancing Relation and Semantic Understanding in Multiple Instances for Visual Grounding [42.10086029931937]
ビジュアルグラウンドティングは、自然言語クエリに基づいて画像に参照されるオブジェクトをローカライズすることを目的としている。
既存の手法では、画像に複数の障害がある場合、大幅な性能低下を示す。
本稿では,Relation and Semantic-sensitive Visual Grounding (ResVG)モデルを提案する。
論文 参考訳(メタデータ) (2024-08-29T07:32:01Z) - IMProv: Inpainting-based Multimodal Prompting for Computer Vision Tasks [124.90137528319273]
本稿では,マルチモーダルプロンプトから視覚タスクをインコンテキストで学習できる生成モデルIMProvを提案する。
我々は、コンピュータビジョン論文とその関連キャプションから、新しい数字のデータセットにマスク付き生成変換器を訓練する。
推測時間中、テキストおよび/または画像タスクの例でモデルにプロンプトし、そのモデルに対応する出力を印字させる。
論文 参考訳(メタデータ) (2023-12-04T09:48:29Z) - Visual Data-Type Understanding does not emerge from Scaling
Vision-Language Models [31.69213233651326]
視覚データ型識別の新しい課題について紹介する。
39の視覚言語モデル(VLM)の広範囲なゼロショット評価は、微妙なパフォーマンスランドスケープを示している。
論文 参考訳(メタデータ) (2023-10-12T17:59:30Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
画像とテキストとのマッチングを訓練した大規模視覚言語モデル(VLM)では,空間的関係の微妙な理解が欠如していることが示されている。
本稿では,空間的節の認識とランク付けのための,よりきめ細かな構成的アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-18T18:58:54Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - CLIP-Count: Towards Text-Guided Zero-Shot Object Counting [32.07271723717184]
オープン語彙オブジェクトの密度マップをゼロショットで推定する,最初のエンドツーエンドパイプラインであるCLIP-Countを提案する。
テキスト埋め込みを濃密な視覚特徴と整合させるため、我々は、密集した予測のための情報的パッチレベルの視覚表現を学習するために、モデルを誘導するパッチテキストコントラスト損失を導入する。
本手法は,対象物に対する高品質な密度マップを効果的に生成する。
論文 参考訳(メタデータ) (2023-05-12T08:19:39Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - MGA-VQA: Multi-Granularity Alignment for Visual Question Answering [75.55108621064726]
視覚的な質問に答えることを学ぶことは、マルチモーダル入力が2つの特徴空間内にあるため、難しい作業である。
視覚質問応答タスク(MGA-VQA)のための多言語アライメントアーキテクチャを提案する。
我々のモデルはアライメントを異なるレベルに分割し、追加のデータやアノテーションを必要とせずにより良い相関関係を学習します。
論文 参考訳(メタデータ) (2022-01-25T22:30:54Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
数ショット学習シナリオにおけるスケールと位置ミスマッチの影響について検討する。
本稿では,複数のスケールや場所のマッチングを効果的に行うための,空間認識型マッチング手法を提案する。
論文 参考訳(メタデータ) (2020-01-06T14:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。