論文の概要: Integrating Clinical Knowledge Graphs and Gradient-Based Neural Systems for Enhanced Melanoma Diagnosis via the 7-Point Checklist
- arxiv url: http://arxiv.org/abs/2407.16822v2
- Date: Wed, 13 Aug 2025 03:24:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-14 20:42:00.4476
- Title: Integrating Clinical Knowledge Graphs and Gradient-Based Neural Systems for Enhanced Melanoma Diagnosis via the 7-Point Checklist
- Title(参考訳): 7点チェックリストによる悪性黒色腫診断のための臨床知識グラフとグラディエントベースニューラルネットワークの統合
- Authors: Yuheng Wang, Tianze Yu, Jiayue Cai, Sunil Kalia, Harvey Lui, Z. Jane Wang, Tim K. Lee,
- Abstract要約: 従来の7PCLは悪性黒色腫と黒色腫の区別に限られている。
臨床知識に基づくトポロジカルグラフ(CKTG)と勾配診断戦略を統合する新しい診断フレームワークを提案する。
AUCAは平均88.6%と評価され,メラノーマ検出の特徴予測において優れた性能を示した。
- 参考スコア(独自算出の注目度): 12.626492318152058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The 7-point checklist (7PCL) is a widely used diagnostic tool in dermoscopy for identifying malignant melanoma by assigning point values to seven specific attributes. However, the traditional 7PCL is limited to distinguishing between malignant melanoma and melanocytic Nevi, and falls short in scenarios where multiple skin diseases with appearances similar to melanoma coexist. To address this limitation, we propose a novel diagnostic framework that integrates a clinical knowledge-based topological graph (CKTG) with a gradient diagnostic strategy featuring a data-driven weighting system (GD-DDW). The CKTG captures both the internal and external relationships among the 7PCL attributes, while the GD-DDW emulates dermatologists' diagnostic processes, prioritizing visual observation before making predictions. Additionally, we introduce a multimodal feature extraction approach leveraging a dual-attention mechanism to enhance feature extraction through cross-modal interaction and unimodal collaboration. This method incorporates meta-information to uncover interactions between clinical data and image features, ensuring more accurate and robust predictions. Our approach, evaluated on the EDRA dataset, achieved an average AUC of 88.6%, demonstrating superior performance in melanoma detection and feature prediction. This integrated system provides data-driven benchmarks for clinicians, significantly enhancing the precision of melanoma diagnosis.
- Abstract(参考訳): 7-point checklist (7PCL) は, 悪性黒色腫の診断に7つの特異な属性に点値を割り当てることにより広く用いられている診断ツールである。
しかし、従来の7PCLは悪性黒色腫と黒色腫の区別に限られており、メラノーマに類似した外観を持つ複数の皮膚疾患のシナリオでは不十分である。
この限界に対処するために、臨床知識に基づくトポロジグラフ(CKTG)とデータ駆動重み付けシステム(GD-DDW)を特徴とする勾配診断戦略を統合する新しい診断フレームワークを提案する。
CKTGは7PCL属性の内外の関係を捉え、GD-DDWは皮膚科医の診断プロセスをエミュレートし、予測する前に視覚的観察を優先する。
さらに,マルチモーダルな特徴抽出手法を提案する。
臨床データと画像特徴の相互作用を明らかにするためにメタ情報を導入し、より正確で堅牢な予測を確実にする。
EDRAデータセットによるアプローチは平均88.6%のAUCを達成し,メラノーマ検出と特徴予測に優れた性能を示した。
この統合システムは、臨床医にデータ駆動型ベンチマークを提供し、メラノーマ診断の精度を大幅に向上させる。
関連論文リスト
- Texture Feature Analysis for Classification of Early-Stage Prostate Cancer in mpMRI [0.0]
本研究では,一階統計的特徴,ハラリックテクスチャ的特徴,および局所二分法パターンによる分類への寄与を分析した。
我々は、分類結果を決定する少数の特徴を特定し、説明可能なAIアプローチの開発に役立つかもしれない。
論文 参考訳(メタデータ) (2024-06-21T18:12:58Z) - Self-Supervised Multi-Modality Learning for Multi-Label Skin Lesion
Classification [15.757141597485374]
マルチモーダル皮膚病変分類のための自己教師付き学習アルゴリズムを提案する。
本アルゴリズムは,2対の皮膚内視鏡像と臨床像との類似性を最大化することにより,マルチモーダリティ学習を実現する。
以上の結果から,我々のアルゴリズムは最先端のSSLよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-10-28T04:16:08Z) - Increasing Melanoma Diagnostic Confidence: Forcing the Convolutional
Network to Learn from the Lesion [0.9143713488498512]
EfficientNetモデルによりメラノーマ認識を改善する新しい手法を提案する。
モデルは、ネットワークをトレーニングして、病変を検出し、検出された病変から特徴を学習する。
実験の結果,提案手法は受信機動作特性曲線の平均値(平均AUC)を0.9から0.922に高めることにより,診断精度を向上させた。
論文 参考訳(メタデータ) (2023-05-16T15:34:12Z) - Trustworthy Visual Analytics in Clinical Gait Analysis: A Case Study for
Patients with Cerebral Palsy [43.55994393060723]
gaitXplorerは、CP関連歩行パターンの分類のための視覚分析手法である。
Grad-CAMは、機械学習の分類の説明のために、よく確立された説明可能な人工知能アルゴリズムである。
論文 参考訳(メタデータ) (2022-08-10T09:21:28Z) - Domain Invariant Model with Graph Convolutional Network for Mammogram
Classification [49.691629817104925]
グラフ畳み込みネットワークを用いたドメイン不変モデル(DIM-GCN)を提案する。
まず,潜伏変数を病原性その他の疾患関連部位に明示的に分解するベイズネットワークを提案する。
マクロな特徴をよりよく捉えるために、我々は、GCN(Graph Convolutional Network)を介して、観察された臨床特性を再構築の目的として活用する。
論文 参考訳(メタデータ) (2022-04-21T08:23:44Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Segmentation and ABCD rule extraction for skin tumors classification [0.0]
悪性皮膚病変を鑑別するために臨床診断に用いたABCDルールに基づく自動診断システムを提案する。
このフレームワークは320枚の画像の皮膚科データベース [16] でテストされている。
論文 参考訳(メタデータ) (2021-06-08T14:07:59Z) - Act Like a Radiologist: Towards Reliable Multi-view Correspondence
Reasoning for Mammogram Mass Detection [49.14070210387509]
マンモグラム質量検出のための解剖学的グラフ畳み込みネットワーク(AGN)を提案する。
AGNはマンモグラムの質量検出用に調整されており、既存の検出手法を多視点推論能力で実現している。
2つの標準ベンチマークの実験によると、AGNは最先端のパフォーマンスを大幅に上回っている。
論文 参考訳(メタデータ) (2021-05-21T06:48:34Z) - Explaining COVID-19 and Thoracic Pathology Model Predictions by
Identifying Informative Input Features [47.45835732009979]
ニューラルネットワークは胸部X線上の分類および回帰タスクにおいて顕著な性能を示した。
特徴帰属法は、出力予測における入力特徴の重要性を識別する。
本研究では,NIH Chest X-ray8およびBrixIAデータセット上で,人間中心の解釈可能性指標と人間に依存しない特徴重要度指標の両方を用いて評価する。
論文 参考訳(メタデータ) (2021-04-01T11:42:39Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
大腸内視鏡画像の高精度なポリープ分割のための並列リバースアテンションネットワーク(PraNet)を提案する。
並列部分復号器(PPD)を用いて,まず高層層に特徴を集約する。
さらに,エリアとバウンダリの関連性を確立するために,リバースアテンション(RA)モジュールを用いて境界キューをマイニングする。
論文 参考訳(メタデータ) (2020-06-13T08:13:43Z) - Automatic Lesion Detection System (ALDS) for Skin Cancer Classification
Using SVM and Neural Classifiers [0.6445605125467573]
自動病変検出システム(ALDS)は、医師や皮膚科医が皮膚がんの適切な解析と治療のための第2の意見を得るのに役立つ。
本稿では,確率論的アプローチに基づく改良ALDSフレームワークの開発に焦点をあてる。
論文 参考訳(メタデータ) (2020-03-13T13:31:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。