Balanced Multi-Relational Graph Clustering
- URL: http://arxiv.org/abs/2407.16863v1
- Date: Tue, 23 Jul 2024 22:11:13 GMT
- Title: Balanced Multi-Relational Graph Clustering
- Authors: Zhixiang Shen, Haolan He, Zhao Kang,
- Abstract summary: Multi-relational graph clustering has demonstrated remarkable success in uncovering underlying patterns in complex networks.
Our empirical study finds the pervasive presence of imbalance in real-world graphs, which is in principle contradictory to the motivation of alignment.
We propose Balanced Multi-Relational Graph Clustering (BMGC), comprising unsupervised dominant view mining and dual signals guided representation learning.
- Score: 5.531383184058319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-relational graph clustering has demonstrated remarkable success in uncovering underlying patterns in complex networks. Representative methods manage to align different views motivated by advances in contrastive learning. Our empirical study finds the pervasive presence of imbalance in real-world graphs, which is in principle contradictory to the motivation of alignment. In this paper, we first propose a novel metric, the Aggregation Class Distance, to empirically quantify structural disparities among different graphs. To address the challenge of view imbalance, we propose Balanced Multi-Relational Graph Clustering (BMGC), comprising unsupervised dominant view mining and dual signals guided representation learning. It dynamically mines the dominant view throughout the training process, synergistically improving clustering performance with representation learning. Theoretical analysis ensures the effectiveness of dominant view mining. Extensive experiments and in-depth analysis on real-world and synthetic datasets showcase that BMGC achieves state-of-the-art performance, underscoring its superiority in addressing the view imbalance inherent in multi-relational graphs. The source code and datasets are available at https://github.com/zxlearningdeep/BMGC.
Related papers
- Disentangled Generative Graph Representation Learning [51.59824683232925]
This paper introduces DiGGR (Disentangled Generative Graph Representation Learning), a self-supervised learning framework.
It aims to learn latent disentangled factors and utilize them to guide graph mask modeling.
Experiments on 11 public datasets for two different graph learning tasks demonstrate that DiGGR consistently outperforms many previous self-supervised methods.
arXiv Detail & Related papers (2024-08-24T05:13:02Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Deep Embedded Multi-View Clustering via Jointly Learning Latent
Representations and Graphs [13.052394521739192]
We propose Deep Embedded Multi-view Clustering via Jointly Learning Latent Representations and Graphs (DMVCJ)
By learning the latent graphs and feature representations jointly, the graph convolution network (GCN) technique becomes available for our model.
Based on the adjacency relations of nodes shown in the latent graphs, we design a sample-weighting strategy to alleviate the noisy issue.
arXiv Detail & Related papers (2022-05-08T07:40:21Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z) - Deep Graph Contrastive Representation Learning [23.37786673825192]
We propose a novel framework for unsupervised graph representation learning by leveraging a contrastive objective at the node level.
Specifically, we generate two graph views by corruption and learn node representations by maximizing the agreement of node representations in these two views.
We perform empirical experiments on both transductive and inductive learning tasks using a variety of real-world datasets.
arXiv Detail & Related papers (2020-06-07T11:50:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.