Disentangled Generative Graph Representation Learning
- URL: http://arxiv.org/abs/2408.13471v1
- Date: Sat, 24 Aug 2024 05:13:02 GMT
- Title: Disentangled Generative Graph Representation Learning
- Authors: Xinyue Hu, Zhibin Duan, Xinyang Liu, Yuxin Li, Bo Chen, Mingyuan Zhou,
- Abstract summary: This paper introduces DiGGR (Disentangled Generative Graph Representation Learning), a self-supervised learning framework.
It aims to learn latent disentangled factors and utilize them to guide graph mask modeling.
Experiments on 11 public datasets for two different graph learning tasks demonstrate that DiGGR consistently outperforms many previous self-supervised methods.
- Score: 51.59824683232925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, generative graph models have shown promising results in learning graph representations through self-supervised methods. However, most existing generative graph representation learning (GRL) approaches rely on random masking across the entire graph, which overlooks the entanglement of learned representations. This oversight results in non-robustness and a lack of explainability. Furthermore, disentangling the learned representations remains a significant challenge and has not been sufficiently explored in GRL research. Based on these insights, this paper introduces DiGGR (Disentangled Generative Graph Representation Learning), a self-supervised learning framework. DiGGR aims to learn latent disentangled factors and utilizes them to guide graph mask modeling, thereby enhancing the disentanglement of learned representations and enabling end-to-end joint learning. Extensive experiments on 11 public datasets for two different graph learning tasks demonstrate that DiGGR consistently outperforms many previous self-supervised methods, verifying the effectiveness of the proposed approach.
Related papers
- GRENADE: Graph-Centric Language Model for Self-Supervised Representation
Learning on Text-Attributed Graphs [22.282756544376493]
We develop a novel Graph-Centric Language model, GRENADE, to solve the problem of self-supervised representation learning on text-attributed graphs.
GRENADE exploits the synergistic effect of both pre-trained language model and graph neural network by optimizing with two specialized self-supervised learning algorithms.
The proposed graph-centric self-supervised learning algorithms effectively help GRENADE to capture informative textual semantics as well as structural context information on text-attributed graphs.
arXiv Detail & Related papers (2023-10-23T17:18:35Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
We propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects.
RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders.
arXiv Detail & Related papers (2022-08-18T01:31:25Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - GraphMAE: Self-Supervised Masked Graph Autoencoders [52.06140191214428]
We present a masked graph autoencoder GraphMAE that mitigates issues for generative self-supervised graph learning.
We conduct extensive experiments on 21 public datasets for three different graph learning tasks.
The results manifest that GraphMAE--a simple graph autoencoder with our careful designs--can consistently generate outperformance over both contrastive and generative state-of-the-art baselines.
arXiv Detail & Related papers (2022-05-22T11:57:08Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Learning Robust Representation through Graph Adversarial Contrastive
Learning [6.332560610460623]
Existing studies show that node representations generated by graph neural networks (GNNs) are vulnerable to adversarial attacks.
We propose a novel Graph Adversarial Contrastive Learning framework (GraphACL) by introducing adversarial augmentations into graph self-supervised learning.
arXiv Detail & Related papers (2022-01-31T07:07:51Z) - Cross-view Self-Supervised Learning on Heterogeneous Graph Neural
Network via Bootstrapping [0.0]
Heterogeneous graph neural networks can represent information of heterogeneous graphs with excellent ability.
In this paper, we introduce a that can generate good representations without generating large number of pairs.
The proposed model showed state-of-the-art performance than other methods in various real world datasets.
arXiv Detail & Related papers (2022-01-10T13:36:05Z) - Iterative Graph Self-Distillation [161.04351580382078]
We propose a novel unsupervised graph learning paradigm called Iterative Graph Self-Distillation (IGSD)
IGSD iteratively performs the teacher-student distillation with graph augmentations.
We show that we achieve significant and consistent performance gain on various graph datasets in both unsupervised and semi-supervised settings.
arXiv Detail & Related papers (2020-10-23T18:37:06Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.