論文の概要: Vision-Based Adaptive Robotics for Autonomous Surface Crack Repair
- arxiv url: http://arxiv.org/abs/2407.16874v2
- Date: Wed, 16 Oct 2024 04:18:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:23:20.926338
- Title: Vision-Based Adaptive Robotics for Autonomous Surface Crack Repair
- Title(参考訳): 自律的な表面ひび割れ修復のための視覚型適応ロボット
- Authors: Joshua Genova, Eric Cabrera, Vedhus Hoskere,
- Abstract要約: 本稿では,ロボットを用いた表面き裂検出と修復のための適応型自律システムを提案する。
このシステムは、亀裂検出にRGB-Dカメラ、精密測定にレーザースキャナー、押出機と物質沈着用ポンプを使用する。
実世界の適用性とテストの再現性を確保するため, 3Dプリントによるクラック検体を用いた新しい検証手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Surface cracks in infrastructure can lead to significant deterioration and costly maintenance if not efficiently repaired. Manual repair methods are labor-intensive, time-consuming, and imprecise and thus difficult to scale to large areas. While advancements in robotic perception and manipulation have progressed autonomous crack repair, existing methods still face three key challenges: accurate localization of cracks within the robot's coordinate frame, (ii) adaptability to varying crack depths and widths, and (iii) validation of the repair process under realistic conditions. This paper presents an adaptive, autonomous system for surface crack detection and repair using robotics with advanced sensing technologies to enhance precision and safety for humans. The system uses an RGB-D camera for crack detection, a laser scanner for precise measurement, and an extruder and pump for material deposition. To address one of the key challenges, the laser scanner is used to enhance the crack coordinates for accurate localization. Furthermore, our approach demonstrates that an adaptive crack-filling method is more efficient and effective than a fixed-speed approach, with experimental results confirming both precision and consistency. In addition, to ensure real-world applicability and testing repeatability, we introduce a novel validation procedure using 3D-printed crack specimens that accurately simulate real-world conditions. This research contributes to the evolving field of human-robot interaction in construction by demonstrating how adaptive robotic systems can reduce the need for manual labor, improve safety, and enhance the efficiency of maintenance operations, ultimately paving the way for more sophisticated and integrated construction robotics.
- Abstract(参考訳): インフラストラクチャの表面ひび割れは、効率的に修復しなければ、大幅な劣化とコストのかかるメンテナンスにつながる可能性がある。
手作業による修復法は、労働集約的で、時間がかかり、不正確であり、大規模に拡張することは困難である。
ロボットの認識と操作の進歩により、自律的なひび割れの修復が進んでいるが、既存の方法は、ロボットの座標フレーム内のひび割れの正確な位置決めという、3つの重要な課題に直面している。
二 ひび割れ深さ及び幅の変化への適応性及び
三 現実的な条件下での修理過程の検証
本稿では,ロボットによる表面き裂検出と修復のための適応型自律システムについて述べる。
このシステムは、亀裂検出にRGB-Dカメラ、精密測定にレーザースキャナー、押出機と物質沈着用ポンプを使用する。
重要な課題の1つに対処するため、レーザースキャナーは正確な位置決めのためのひび割れ座標を強化するために使用される。
さらに, 適応クラック充填法は固定速度法よりも効率的かつ効果的であることを示すとともに, 精度と整合性について実験的に検証した。
さらに,実世界の再現性を確保するために,実世界の条件を正確にシミュレートした3Dプリントき裂検体を用いた新しい検証手法を提案する。
この研究は、適応型ロボットシステムが手作業の必要性を減らし、安全を改善し、メンテナンス作業の効率化を図り、最終的にはより高度で統合された建設ロボティクスの道を開くことによって、建設における人間とロボットの相互作用の進化に寄与する。
関連論文リスト
- Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
ハンドアイキャリブレーションでは、カメラとロボット間の変換を推定する。
ディープラーニングの最近の進歩は、マーカーレス技術を提供するが、それらは課題を提示している。
自動的かつ普遍的なマーカーレスハンドアイキャリブレーションパイプラインであるKalibを提案する。
論文 参考訳(メタデータ) (2024-08-20T06:03:40Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
異常検出は、産業制御システムの安全かつ信頼性の高い運用に不可欠である。
本稿では,このニーズを満たすための新しい深層生成モデルを提案する。
論文 参考訳(メタデータ) (2024-05-03T23:58:27Z) - Robust Surgical Tool Tracking with Pixel-based Probabilities for
Projected Geometric Primitives [28.857732667640068]
視覚フィードバックによるロボットマニピュレータの制御には、ロボットとカメラの間の既知の座標フレーム変換が必要である。
メカニカルシステムとカメラキャリブレーションの不確かさは、この座標フレーム変換に誤りをもたらす。
画像ベース挿入軸検出アルゴリズムと確率モデルを用いて,手術用ロボットのカメラ間変換と関節角度測定誤差を推定する。
論文 参考訳(メタデータ) (2024-03-08T00:57:03Z) - Mechanics-Informed Autoencoder Enables Automated Detection and Localization of Unforeseen Structural Damage [12.889670445791985]
MIDASは、構造物の損傷の自動検出と位置決めのための"deploy-and-forget"アプローチである。
これは、安価なセンサー、データ圧縮、およびメカニックインフォームドオートエンコーダから完全に受動的に計測される相乗的な統合である。
わずか3時間のデータから学んだMIDASは、さまざまな種類の予期せぬ損傷を自律的に検出し、ローカライズすることができる。
論文 参考訳(メタデータ) (2024-02-23T18:31:02Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
機械学習と自己整合フィールド法を統合して,検証コストの低減と解釈可能性の両立を実現する。
これにより、積極的学習によるモデルの能力の探索が可能となり、実際の研究への統合への信頼がもたらされる。
論文 参考訳(メタデータ) (2024-02-15T18:41:35Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
我々は、マーカーレスでホワイトボックスであり、より優れた精度とロバスト性を提供するEasyHeCと呼ばれる手眼校正の新しいアプローチを導入する。
我々は,2つの重要な技術 – レンダリングベースのカメラポーズの最適化と整合性に基づく共同空間探索 – を利用することを提案する。
本評価は,合成および実世界のデータセットにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-02T03:49:54Z) - A Distance-Geometric Method for Recovering Robot Joint Angles From an
RGB Image [7.971699294672282]
本稿では,ロボットマニピュレータの関節角度を現在の構成の1つのRGB画像のみを用いて検索する手法を提案する。
提案手法は,構成空間の距離幾何学的表現に基づいて,ロボットの運動モデルに関する知識を活用する。
論文 参考訳(メタデータ) (2023-01-05T12:57:45Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
近年の研究では、現実的なロボット学習の応用において、対人訓練の効果が公平なトレードオフを起こさないことが示されている。
本研究は,ロボット学習におけるロバストネスと精度のトレードオフを再考し,最近のロバストトレーニング手法と理論の進歩により,現実のロボット応用に適した対人トレーニングが可能かどうかを解析する。
論文 参考訳(メタデータ) (2022-04-15T08:12:15Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
本稿では,コンタクトリッチタスクに必要な力プロファイルの予測モデルを学習するための新しいアプローチを提案する。
このアプローチは、双方向Gated Recurrent Units (Bi-GRU) に基づく異常検出と適応力/インピーダンス制御を組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-01T05:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。