(Unfair) Norms in Fairness Research: A Meta-Analysis
- URL: http://arxiv.org/abs/2407.16895v1
- Date: Mon, 17 Jun 2024 17:14:47 GMT
- Title: (Unfair) Norms in Fairness Research: A Meta-Analysis
- Authors: Jennifer Chien, A. Stevie Bergman, Kevin R. McKee, Nenad Tomasev, Vinodkumar Prabhakaran, Rida Qadri, Nahema Marchal, William Isaac,
- Abstract summary: We conduct a meta-analysis of algorithmic fairness papers from two leading conferences on AI fairness and ethics.
Our investigation reveals two concerning trends: first, a US-centric perspective dominates throughout fairness research.
Second, fairness studies exhibit a widespread reliance on binary codifications of human identity.
- Score: 6.395584220342517
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Algorithmic fairness has emerged as a critical concern in artificial intelligence (AI) research. However, the development of fair AI systems is not an objective process. Fairness is an inherently subjective concept, shaped by the values, experiences, and identities of those involved in research and development. To better understand the norms and values embedded in current fairness research, we conduct a meta-analysis of algorithmic fairness papers from two leading conferences on AI fairness and ethics, AIES and FAccT, covering a final sample of 139 papers over the period from 2018 to 2022. Our investigation reveals two concerning trends: first, a US-centric perspective dominates throughout fairness research; and second, fairness studies exhibit a widespread reliance on binary codifications of human identity (e.g., "Black/White", "male/female"). These findings highlight how current research often overlooks the complexities of identity and lived experiences, ultimately failing to represent diverse global contexts when defining algorithmic bias and fairness. We discuss the limitations of these research design choices and offer recommendations for fostering more inclusive and representative approaches to fairness in AI systems, urging a paradigm shift that embraces nuanced, global understandings of human identity and values.
Related papers
- Fairness and Bias Mitigation in Computer Vision: A Survey [61.01658257223365]
Computer vision systems are increasingly being deployed in high-stakes real-world applications.
There is a dire need to ensure that they do not propagate or amplify any discriminatory tendencies in historical or human-curated data.
This paper presents a comprehensive survey on fairness that summarizes and sheds light on ongoing trends and successes in the context of computer vision.
arXiv Detail & Related papers (2024-08-05T13:44:22Z) - FairAIED: Navigating Fairness, Bias, and Ethics in Educational AI Applications [2.612585751318055]
The integration of Artificial Intelligence into education has transformative potential, providing tailored learning experiences and creative instructional approaches.
However, the inherent biases in AI algorithms hinder this improvement by unintentionally perpetuating prejudice against specific demographics.
This survey delves deeply into the developing topic of algorithmic fairness in educational contexts.
It identifies the common forms of biases, such as data-related, algorithmic, and user-interaction, that fundamentally undermine the accomplishment of fairness in AI teaching aids.
arXiv Detail & Related papers (2024-07-26T13:59:20Z) - The Pursuit of Fairness in Artificial Intelligence Models: A Survey [2.124791625488617]
This survey offers a synopsis of the different ways researchers have promoted fairness in AI systems.
A thorough study is conducted of the approaches and techniques employed by researchers to mitigate bias in AI models.
We also delve into the impact of biased models on user experience and the ethical considerations to contemplate when developing and deploying such models.
arXiv Detail & Related papers (2024-03-26T02:33:36Z) - AI Fairness in Practice [0.46671368497079174]
There is a broad spectrum of views across society on what the concept of fairness means and how it should be put to practice.
This workbook explores how a context-based approach to understanding AI Fairness can help project teams better identify, mitigate, and manage the many ways that unfair bias and discrimination can crop up across the AI project workflow.
arXiv Detail & Related papers (2024-02-19T23:02:56Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - Factoring the Matrix of Domination: A Critical Review and Reimagination
of Intersectionality in AI Fairness [55.037030060643126]
Intersectionality is a critical framework that allows us to examine how social inequalities persist.
We argue that adopting intersectionality as an analytical framework is pivotal to effectively operationalizing fairness.
arXiv Detail & Related papers (2023-03-16T21:02:09Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Rethinking Fairness: An Interdisciplinary Survey of Critiques of
Hegemonic ML Fairness Approaches [0.0]
This survey article assesses and compares critiques of current fairness-enhancing technical interventions into machine learning (ML)
It draws from a range of non-computing disciplines, including philosophy, feminist studies, critical race and ethnic studies, legal studies, anthropology, and science and technology studies.
The article concludes by imagining future ML fairness research directions that actively disrupt entrenched power dynamics and structural injustices in society.
arXiv Detail & Related papers (2022-05-06T14:27:57Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z) - Algorithmic Fairness Datasets: the Story so Far [68.45921483094705]
Data-driven algorithms are studied in diverse domains to support critical decisions, directly impacting people's well-being.
A growing community of researchers has been investigating the equity of existing algorithms and proposing novel ones, advancing the understanding of risks and opportunities of automated decision-making for historically disadvantaged populations.
Progress in fair Machine Learning hinges on data, which can be appropriately used only if adequately documented.
Unfortunately, the algorithmic fairness community suffers from a collective data documentation debt caused by a lack of information on specific resources (opacity) and scatteredness of available information (sparsity)
arXiv Detail & Related papers (2022-02-03T17:25:46Z) - Algorithmic Fairness [11.650381752104298]
It is crucial to develop AI algorithms that are not only accurate but also objective and fair.
Recent studies have shown that algorithmic decision-making may be inherently prone to unfairness.
arXiv Detail & Related papers (2020-01-21T19:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.