From Sands to Mansions: Enabling Automatic Full-Life-Cycle Cyberattack Construction with LLM
- URL: http://arxiv.org/abs/2407.16928v1
- Date: Wed, 24 Jul 2024 01:33:57 GMT
- Title: From Sands to Mansions: Enabling Automatic Full-Life-Cycle Cyberattack Construction with LLM
- Authors: Lingzhi Wang, Jiahui Wang, Kyle Jung, Kedar Thiagarajan, Emily Wei, Xiangmin Shen, Yan Chen, Zhenyuan Li,
- Abstract summary: Existing cyberattack simulation frameworks face challenges such as limited technical coverage, inability to conduct full-life-cycle attacks, and the need for manual infrastructure building.
We proposed AURORA, an automatic end-to-end cyberattack construction and emulation framework.
AURORA can autonomously build multi-stage cyberattack plans based on Cyber Threat Intelligence (CTI) reports, construct the emulation infrastructures, and execute the attack procedures.
- Score: 6.534605400247412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The escalating battles between attackers and defenders in cybersecurity make it imperative to test and evaluate defense capabilities from the attackers' perspective. However, constructing full-life-cycle cyberattacks and performing red team emulations requires significant time and domain knowledge from security experts. Existing cyberattack simulation frameworks face challenges such as limited technical coverage, inability to conduct full-life-cycle attacks, and the need for manual infrastructure building. These limitations hinder the quality and diversity of the constructed attacks. In this paper, we leveraged the capabilities of Large Language Models (LLMs) in summarizing knowledge from existing attack intelligence and generating executable machine code based on human knowledge. we proposed AURORA, an automatic end-to-end cyberattack construction and emulation framework. AURORA can autonomously build multi-stage cyberattack plans based on Cyber Threat Intelligence (CTI) reports, construct the emulation infrastructures, and execute the attack procedures. We also developed an attack procedure knowledge graph to integrate knowledge about attack techniques throughout the full life cycle of advanced cyberattacks from various sources. We constructed and evaluated more than 20 full-life-cycle cyberattacks based on existing CTI reports. Compared to previous attack simulation frameworks, AURORA can construct multi-step attacks and the infrastructures in several minutes without human intervention. Furthermore, AURORA incorporates a wider range (40% more) of attack techniques into the constructed attacks in a more efficient way than the professional red teams. To benefit further research, we open-sourced the dataset containing the execution files and infrastructures of 20 emulated cyberattacks.
Related papers
- AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments [1.4563527353943984]
The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.
We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.
Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
arXiv Detail & Related papers (2024-12-05T08:56:38Z) - SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
We discuss different software and hardware attacks applicable to compound AI systems.
We show how combining multiple attack mechanisms can reduce the threat model assumptions required for an isolated attack.
arXiv Detail & Related papers (2024-11-20T17:08:38Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
Large Language Models (LLMs) have transformed artificial intelligence by advancing natural language understanding and generation.
Despite these advancements, LLMs have shown considerable vulnerabilities, particularly to prompt injection and jailbreaking attacks.
This review analyzes the state of research on these vulnerabilities and presents available defense strategies.
arXiv Detail & Related papers (2024-10-20T00:00:56Z) - Can We Trust Embodied Agents? Exploring Backdoor Attacks against Embodied LLM-based Decision-Making Systems [27.316115171846953]
Large Language Models (LLMs) have shown significant promise in real-world decision-making tasks for embodied AI.
LLMs are fine-tuned to leverage their inherent common sense and reasoning abilities while being tailored to specific applications.
This fine-tuning process introduces considerable safety and security vulnerabilities, especially in safety-critical cyber-physical systems.
arXiv Detail & Related papers (2024-05-27T17:59:43Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Enabling Efficient Attack Investigation via Human-in-the-Loop Security Analysis [19.805667450941403]
Raptor is a defense system that enables human analysts to effectively analyze large-scale system provenance.
ProvQL offers essential primitives for various types of attack analyses.
Raptor provides an optimized execution engine for efficient language execution.
arXiv Detail & Related papers (2022-11-10T08:13:19Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
We evaluate and compare different Natural Language Processing (NLP) and machine learning techniques used for security information extraction in research.
Based on our investigations we propose a data processing pipeline that automatically classifies unstructured text according to attackers' tactics and techniques.
arXiv Detail & Related papers (2022-07-18T09:59:21Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
More and more malicious attackers attempt to launch adversarial attacks at automatic speaker verification (ASV) systems.
We propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations.
Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks.
arXiv Detail & Related papers (2021-02-14T01:56:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.