AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments
- URL: http://arxiv.org/abs/2412.03979v1
- Date: Thu, 05 Dec 2024 08:56:38 GMT
- Title: AI-based Attacker Models for Enhancing Multi-Stage Cyberattack Simulations in Smart Grids Using Co-Simulation Environments
- Authors: Omer Sen, Christoph Pohl, Immanuel Hacker, Markus Stroot, Andreas Ulbig,
- Abstract summary: The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats.<n>We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks.<n>Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
- Score: 1.4563527353943984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transition to smart grids has increased the vulnerability of electrical power systems to advanced cyber threats. To safeguard these systems, comprehensive security measures-including preventive, detective, and reactive strategies-are necessary. As part of the critical infrastructure, securing these systems is a major research focus, particularly against cyberattacks. Many methods are developed to detect anomalies and intrusions and assess the damage potential of attacks. However, these methods require large amounts of data, which are often limited or private due to security concerns. We propose a co-simulation framework that employs an autonomous agent to execute modular cyberattacks within a configurable environment, enabling reproducible and adaptable data generation. The impact of virtual attacks is compared to those in a physical lab targeting real smart grids. We also investigate the use of large language models for automating attack generation, though current models on consumer hardware are unreliable. Our approach offers a flexible, versatile source for data generation, aiding in faster prototyping and reducing development resources and time.
Related papers
- A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
Model Extraction Attacks (MEAs) threaten modern machine learning systems by enabling adversaries to steal models, exposing intellectual property and training data.
This survey is motivated by the urgent need to understand how the unique characteristics of cloud, edge, and federated deployments shape attack vectors and defense requirements.
We systematically examine the evolution of attack methodologies and defense mechanisms across these environments, demonstrating how environmental factors influence security strategies in critical sectors such as autonomous vehicles, healthcare, and financial services.
arXiv Detail & Related papers (2025-02-22T03:46:50Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
We introduce a novel framework to detect instability in smart grids by employing only stable data.
It relies on a Generative Adversarial Network (GAN) where the generator is trained to create instability data that are used along with stable data to train the discriminator.
Our solution, tested on a dataset composed of real-world stable and unstable samples, achieve accuracy up to 97.5% in predicting grid stability and up to 98.9% in detecting adversarial attacks.
arXiv Detail & Related papers (2025-01-27T20:48:25Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
We introduce a simulation environment that replicates the power grid's infrastructure and communication dynamics.
The framework generates diverse, realistic attack data to train machine learning algorithms for detecting and mitigating cyber threats.
It also provides a controlled, flexible platform to evaluate emerging security technologies, including advanced decision support systems.
arXiv Detail & Related papers (2024-12-09T07:07:17Z) - SoK: A Systems Perspective on Compound AI Threats and Countermeasures [3.458371054070399]
We discuss different software and hardware attacks applicable to compound AI systems.
We show how combining multiple attack mechanisms can reduce the threat model assumptions required for an isolated attack.
arXiv Detail & Related papers (2024-11-20T17:08:38Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
We propose GAN-GRID a novel adversarial attack targeting the stability prediction system of a smart grid tailored to real-world constraints.
Our findings reveal that an adversary armed solely with the stability model's output, devoid of data or model knowledge, can craft data classified as stable with an Attack Success Rate (ASR) of 0.99.
arXiv Detail & Related papers (2024-05-20T14:43:46Z) - AI-Enabled System for Efficient and Effective Cyber Incident Detection and Response in Cloud Environments [0.0]
The escalating sophistication and volume of cyber threats in cloud environments necessitate a paradigm shift in strategies.
This research explores the application of AI and ML and proposes an AI-powered cyber incident response system for cloud environments.
The findings highlight the effectiveness of the Random Forest model, achieving an accuracy 90% for the Network Traffic and 96% for the Malware Analysis Dual Model application.
arXiv Detail & Related papers (2024-04-08T15:22:03Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids [2.5655761752240505]
We propose a method to generate synthetic data using a graph-based approach for training machine learning models in smart grids.
We use an abstract form of multi-stage cyberattacks defined via graph formulations and simulate the propagation behavior of attacks in the network.
arXiv Detail & Related papers (2023-12-21T11:07:51Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
This study proposes a model for generating synthetic data of multi-stage cyber attacks in the power grid.
It uses attack trees to model the attacker's sequence of steps and a game-theoretic approach to incorporate the defender's actions.
arXiv Detail & Related papers (2023-12-21T09:54:18Z) - Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification [44.99833362998488]
Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks.
We propose a novel approach that leverages the power of BERT (Bidirectional Representations from Transformers) and introduces the concept of Space Exploration Features.
arXiv Detail & Related papers (2023-08-29T23:02:26Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
We study blackbox adversarial attacks on network classifiers.
We argue that attacker-defender fixed points are themselves general-sum games with complex phase transitions.
We show that a continual learning approach is required to study attacker-defender dynamics.
arXiv Detail & Related papers (2021-11-23T23:42:16Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.