DVPE: Divided View Position Embedding for Multi-View 3D Object Detection
- URL: http://arxiv.org/abs/2407.16955v1
- Date: Wed, 24 Jul 2024 02:44:41 GMT
- Title: DVPE: Divided View Position Embedding for Multi-View 3D Object Detection
- Authors: Jiasen Wang, Zhenglin Li, Ke Sun, Xianyuan Liu, Yang Zhou,
- Abstract summary: Current research faces challenges in balancing between receptive fields and reducing interference when aggregating multi-view features.
This paper proposes a divided view method, in which features are modeled globally via the visibility crossattention mechanism, but interact only with partial features in a divided local virtual space.
Our framework, named DVPE, achieves state-of-the-art performance (57.2% mAP and 64.5% NDS) on the nuScenes test set.
- Score: 7.791229698270439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse query-based paradigms have achieved significant success in multi-view 3D detection for autonomous vehicles. Current research faces challenges in balancing between enlarging receptive fields and reducing interference when aggregating multi-view features. Moreover, different poses of cameras present challenges in training global attention models. To address these problems, this paper proposes a divided view method, in which features are modeled globally via the visibility crossattention mechanism, but interact only with partial features in a divided local virtual space. This effectively reduces interference from other irrelevant features and alleviates the training difficulties of the transformer by decoupling the position embedding from camera poses. Additionally, 2D historical RoI features are incorporated into the object-centric temporal modeling to utilize highlevel visual semantic information. The model is trained using a one-to-many assignment strategy to facilitate stability. Our framework, named DVPE, achieves state-of-the-art performance (57.2% mAP and 64.5% NDS) on the nuScenes test set. Codes will be available at https://github.com/dop0/DVPE.
Related papers
- SM$^3$: Self-Supervised Multi-task Modeling with Multi-view 2D Images
for Articulated Objects [24.737865259695006]
We propose a self-supervised interaction perception method, referred to as SM$3$, to model articulated objects.
By constructing 3D geometries and textures from the captured 2D images, SM$3$ achieves integrated optimization of movable part and joint parameters.
Evaluations demonstrate that SM$3$ surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.
arXiv Detail & Related papers (2024-01-17T11:15:09Z) - Towards Generalizable Multi-Camera 3D Object Detection via Perspective
Debiasing [28.874014617259935]
Multi-Camera 3D Object Detection (MC3D-Det) has gained prominence with the advent of bird's-eye view (BEV) approaches.
We propose a novel method that aligns 3D detection with 2D camera plane results, ensuring consistent and accurate detections.
arXiv Detail & Related papers (2023-10-17T15:31:28Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
3D object detection with surround-view images is an essential task for autonomous driving.
We propose DETR4D, a Transformer-based framework that explores sparse attention and direct feature query for 3D object detection in multi-view images.
arXiv Detail & Related papers (2022-12-15T14:18:47Z) - A Simple Baseline for Multi-Camera 3D Object Detection [94.63944826540491]
3D object detection with surrounding cameras has been a promising direction for autonomous driving.
We present SimMOD, a Simple baseline for Multi-camera Object Detection.
We conduct extensive experiments on the 3D object detection benchmark of nuScenes to demonstrate the effectiveness of SimMOD.
arXiv Detail & Related papers (2022-08-22T03:38:01Z) - AutoAlignV2: Deformable Feature Aggregation for Dynamic Multi-Modal 3D
Object Detection [17.526914782562528]
We propose AutoAlignV2, a faster and stronger multi-modal 3D detection framework, built on top of AutoAlign.
Our best model reaches 72.4 NDS on nuScenes test leaderboard, achieving new state-of-the-art results.
arXiv Detail & Related papers (2022-07-21T06:17:23Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z) - Self-supervised Human Detection and Segmentation via Multi-view
Consensus [116.92405645348185]
We propose a multi-camera framework in which geometric constraints are embedded in the form of multi-view consistency during training.
We show that our approach outperforms state-of-the-art self-supervised person detection and segmentation techniques on images that visually depart from those of standard benchmarks.
arXiv Detail & Related papers (2020-12-09T15:47:21Z) - Weakly-Supervised 3D Human Pose Learning via Multi-view Images in the
Wild [101.70320427145388]
We propose a weakly-supervised approach that does not require 3D annotations and learns to estimate 3D poses from unlabeled multi-view data.
We evaluate our proposed approach on two large scale datasets.
arXiv Detail & Related papers (2020-03-17T08:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.