Contrastive Learning Is Not Optimal for Quasiperiodic Time Series
- URL: http://arxiv.org/abs/2407.17073v1
- Date: Wed, 24 Jul 2024 08:02:41 GMT
- Title: Contrastive Learning Is Not Optimal for Quasiperiodic Time Series
- Authors: Adrian Atienza, Jakob Bardram, Sadasivan Puthusserypady,
- Abstract summary: We introduce Distilled Embedding for Almost-Periodic Time Series (DEAPS) in this paper.
DEAPS is a non-contrastive method tailored for quasiperiodic time series, such as electrocardiogram (ECG) data.
We demonstrate a notable improvement of +10% over existing SOTA methods when just a few annotated records are presented to fit a Machine Learning (ML) model.
- Score: 4.2807943283312095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite recent advancements in Self-Supervised Learning (SSL) for time series analysis, a noticeable gap persists between the anticipated achievements and actual performance. While these methods have demonstrated formidable generalization capabilities with minimal labels in various domains, their effectiveness in distinguishing between different classes based on a limited number of annotated records is notably lacking. Our hypothesis attributes this bottleneck to the prevalent use of Contrastive Learning, a shared training objective in previous state-of-the-art (SOTA) methods. By mandating distinctiveness between representations for negative pairs drawn from separate records, this approach compels the model to encode unique record-based patterns but simultaneously neglects changes occurring across the entire record. To overcome this challenge, we introduce Distilled Embedding for Almost-Periodic Time Series (DEAPS) in this paper, offering a non-contrastive method tailored for quasiperiodic time series, such as electrocardiogram (ECG) data. By avoiding the use of negative pairs, we not only mitigate the model's blindness to temporal changes but also enable the integration of a "Gradual Loss (Lgra)" function. This function guides the model to effectively capture dynamic patterns evolving throughout the record. The outcomes are promising, as DEAPS demonstrates a notable improvement of +10% over existing SOTA methods when just a few annotated records are presented to fit a Machine Learning (ML) model based on the learned representation.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) is a compact network that incorporates an additional simple yet effective step during inference.
OMS elevates image fidelity and harmonizes the dichotomy between training and inference, while preserving original model parameters.
Once trained, various pre-trained diffusion models with the same latent domain can share the same OMS module.
arXiv Detail & Related papers (2023-11-27T12:02:42Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
Time-series representation learning can extract representations from data with temporal dynamics and sparse labels.
We propose a new time-series representation learning method by combining the advantages of self-supervised tasks.
We evaluate the proposed framework on three downstream tasks: time-series classification, forecasting, and anomaly detection.
arXiv Detail & Related papers (2023-03-02T07:44:06Z) - Consistency-based Self-supervised Learning for Temporal Anomaly
Localization [35.34342265033686]
This work tackles Weakly Supervised Anomaly detection, in which a predictor is allowed to learn from a few labeled anomalies made available during training.
We get inspired by recent advances within the field of self-supervised learning and ask the model to yield the same scores for different augmentations of the same video sequence.
arXiv Detail & Related papers (2022-08-10T10:07:34Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Attention to Warp: Deep Metric Learning for Multivariate Time Series [28.540348999309547]
This paper proposes a novel neural network-based approach for robust yet discriminative time series classification and verification.
We experimentally demonstrate the superiority of the proposed approach over previous non-parametric and deep models.
arXiv Detail & Related papers (2021-03-28T07:54:01Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Graph-Based Continual Learning [9.57751063426439]
Rehearsal approaches alleviate the problem by maintaining and replaying a small episodic memory of previous samples.
We propose to augment such an array with a learnable random graph that captures pairwise similarities between its samples, and use it not only to learn new tasks but also to guard against forgetting.
arXiv Detail & Related papers (2020-07-09T14:03:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.