Generative Regression Based Watch Time Prediction for Short-Video Recommendation
- URL: http://arxiv.org/abs/2412.20211v3
- Date: Sat, 12 Apr 2025 13:16:19 GMT
- Title: Generative Regression Based Watch Time Prediction for Short-Video Recommendation
- Authors: Hongxu Ma, Kai Tian, Tao Zhang, Xuefeng Zhang, Han Zhou, Chunjie Chen, Han Li, Jihong Guan, Shuigeng Zhou,
- Abstract summary: Watch time prediction has emerged as a pivotal task in short video recommendation systems.<n>Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task.<n>We propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task.
- Score: 36.95095097454143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs \textit{structural discretization} to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a \textit{curriculum learning with embedding mixup} strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.
Related papers
- Rethinking Remaining Useful Life Prediction with Scarce Time Series Data: Regression under Indirect Supervision [4.335413713700667]
We introduce a unified framework called parameterized static regression, which takes single points as inputs for regression of target values.
Our method demonstrates competitive performance in prediction accuracy when dealing with highly scarce time series data.
arXiv Detail & Related papers (2025-04-12T13:14:35Z) - Understanding the Limits of Deep Tabular Methods with Temporal Shift [28.738848567072004]
We introduce a plug-and-play temporal embedding method based on Fourier series expansion to learn and incorporate temporal patterns.
Our experiments demonstrate that this temporal embedding, combined with the improved training protocol, provides a more effective and robust framework for learning from temporal data.
arXiv Detail & Related papers (2025-02-27T16:48:53Z) - TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation [47.58016750718323]
We propose TimeDART, a novel self-supervised time series pre-training framework.
TimeDART unifies two powerful generative paradigms to learn more transferable representations.
We conduct extensive experiments on public datasets for time series forecasting and classification.
arXiv Detail & Related papers (2024-10-08T06:08:33Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Explainable Parallel RCNN with Novel Feature Representation for Time
Series Forecasting [0.0]
Time series forecasting is a fundamental challenge in data science.
We develop a parallel deep learning framework composed of RNN and CNN.
Extensive experiments on three datasets reveal the effectiveness of our method.
arXiv Detail & Related papers (2023-05-08T17:20:13Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Retrieval Based Time Series Forecasting [37.48394754614059]
Time series data appears in a variety of applications such as smart transportation and environmental monitoring.
One of the fundamental problems for time series analysis is time series forecasting.
We show both theoretically and empirically that the uncertainty could be effectively reduced by retrieving relevant time series as references.
arXiv Detail & Related papers (2022-09-27T16:43:55Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
Temporal Sentence Grounding in Videos (TSGV) aims to ground a natural language sentence in an untrimmed video.
Recent studies have found that current benchmark datasets may have obvious moment annotation biases.
We introduce a new evaluation metric "dR@n,IoU@m" that discounts the basic recall scores to alleviate the inflating evaluation caused by biased datasets.
arXiv Detail & Related papers (2022-03-10T08:58:18Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
We propose an integrated solution based on the deep neural networks for temporal sets prediction.
A unique perspective is to learn element relationship by constructing set-level co-occurrence graph.
We design an attention-based module to adaptively learn the temporal dependency of elements and sets.
arXiv Detail & Related papers (2020-06-20T03:29:02Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Bridging the Gap Between Training and Inference for Spatio-Temporal
Forecasting [16.06369357595426]
We propose a novel curriculum learning based strategy named Temporal Progressive Growing Sampling to bridge the gap between training and inference for S-temporal sequence forecasting.
Experimental results demonstrate that our proposed method better models long term dependencies and outperforms baseline approaches on two competitive datasets.
arXiv Detail & Related papers (2020-05-19T10:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.