Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks
- URL: http://arxiv.org/abs/2407.17108v1
- Date: Wed, 24 Jul 2024 09:11:34 GMT
- Title: Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks
- Authors: Alessandro Sebastianelli, Francesco Mauro, Giulia Ciabatti, Dario Spiller, Bertrand Le Saux, Paolo Gamba, Silvia Ullo,
- Abstract summary: This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
- Score: 62.12107686529827
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A significant amount of remotely sensed data is generated daily by many Earth observation (EO) spaceborne and airborne sensors over different countries of our planet. Different applications use those data, such as natural hazard monitoring, global climate change, urban planning, and more. Many challenges are brought by the use of these big data in the context of remote sensing applications. In recent years, employment of machine learning (ML) and deep learning (DL)-based algorithms have allowed a more efficient use of these data but the issues in managing, processing, and efficiently exploiting them have even increased since classical computers have reached their limits. This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data. The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data. First its effectiveness is demonstrated through image classification tasks on MNIST and Fashion MNIST datasets, and later on, its capabilities on remote sensing image classification and filtering are shown. Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5\% in EO use cases compared to classical approaches. Moreover, the proposed framework stands out for its reduced parameter size and the absence of training quantum kernels, enabling better scalability for processing massive datasets. These advancements underscore the promising potential of quantum computing in addressing the limitations of classical algorithms in remote sensing applications, offering a more efficient and effective alternative for image data classification and analysis.
Related papers
- Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface.
Cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations.
This paper aims at altimeter-based machine learning solutions to automatically locate ISWs.
arXiv Detail & Related papers (2024-06-18T21:09:56Z) - Sense Less, Generate More: Pre-training LiDAR Perception with Masked Autoencoders for Ultra-Efficient 3D Sensing [0.6340101348986665]
We propose a disruptively frugal LiDAR perception dataflow that generates rather than senses parts of the environment that are either predictable based on the extensive training of the environment or have limited consequence to the overall prediction accuracy.
Our proposed generative pre-training strategy for this purpose, called as radially masked autoencoding (R-MAE), can also be readily implemented in a typical LiDAR system by selectively activating and controlling the laser power for randomly generated angular regions during on-field operations.
arXiv Detail & Related papers (2024-06-12T03:02:54Z) - Efficient Prompt Tuning of Large Vision-Language Model for Fine-Grained
Ship Classification [62.425462136772666]
Fine-grained ship classification in remote sensing (RS-FGSC) poses a significant challenge due to the high similarity between classes and the limited availability of labeled data.
Recent advancements in large pre-trained Vision-Language Models (VLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning.
This study delves into harnessing the potential of VLMs to enhance classification accuracy for unseen ship categories.
arXiv Detail & Related papers (2024-03-13T05:48:58Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - SPADES: A Realistic Spacecraft Pose Estimation Dataset using Event
Sensing [9.583223655096077]
Due to limited access to real target datasets, algorithms are often trained using synthetic data and applied in the real domain.
Event sensing has been explored in the past and shown to reduce the domain gap between simulations and real-world scenarios.
We introduce a novel dataset, SPADES, comprising real event data acquired in a controlled laboratory environment and simulated event data using the same camera intrinsics.
arXiv Detail & Related papers (2023-11-09T12:14:47Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
Self-supervised learning has been applied in the remote sensing domain to exploit readily-available unlabeled data.
In this paper, we study self-supervised visual representation learning through the lens of label efficiency.
arXiv Detail & Related papers (2022-10-13T06:54:13Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.