Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization
- URL: http://arxiv.org/abs/2406.13060v1
- Date: Tue, 18 Jun 2024 21:09:56 GMT
- Title: Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization
- Authors: Zhang Wan, Shuo Wang, Xudong Zhang,
- Abstract summary: Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface.
Cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations.
This paper aims at altimeter-based machine learning solutions to automatically locate ISWs.
- Score: 7.444865250744234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface. They hold significant importance due to their capacity to carry substantial energy, thus influence pollutant transport, oil platform operations, submarine navigation, etc. Researchers have studied ISWs through optical images, synthetic aperture radar (SAR) images, and altimeter data from remote sensing instruments. However, cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations. As such, this paper aims at altimeter-based machine learning solutions to automatically locate ISWs. The challenges, however, lie in the following two aspects: 1) the altimeter data has low resolution, which requires a strong machine learner; 2) labeling data is extremely labor-intensive, leading to very limited data for training. In recent years, the grand progress of deep learning demonstrates strong learning capacity given abundant data. Besides, more recent studies on efficient learning and self-supervised learning laid solid foundations to tackle the aforementioned challenges. In this paper, we propose to inject prior knowledge to achieve a strong and efficient learner. Specifically, intrinsic patterns in altimetry data are efficiently captured using a scale-translation equivariant convolutional neural network (ST-ECNN). By considering inherent symmetries in neural network design, ST-ECNN achieves higher efficiency and better performance than baseline models. Furthermore, we also introduce prior knowledge from massive unsupervised data to enhance our solution using the SimCLR framework for pre-training. Our final solution achieves an overall better performance than baselines on our handcrafted altimetry dataset. Data and codes are available at https://github.com/ZhangWan-byte/Internal_Solitary_Wave_Localization .
Related papers
- Leveraging Foundation Models for Zero-Shot IoT Sensing [5.319176383069102]
Deep learning models are increasingly deployed on edge Internet of Things (IoT) devices.
ZSL aims to classify data of unseen classes with the help of semantic information.
In this work, we align the IoT data embeddings with the semantic embeddings generated by an FM's text encoder for zero-shot IoT sensing.
arXiv Detail & Related papers (2024-07-29T11:16:48Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
arXiv Detail & Related papers (2024-07-24T09:11:34Z) - Topics in Deep Learning and Optimization Algorithms for IoT Applications
in Smart Transportation [0.0]
This thesis investigates how different optimization algorithms and machine learning techniques can be leveraged to improve system performance.
In the first topic, we propose an optimal transmission frequency management scheme using decentralized ADMM-based method.
In the second topic, we leverage graph neural network (GNN) for demand prediction for shared bikes.
In the last topic, we consider a highway traffic network scenario where frequent lane changing behaviors may occur with probability.
arXiv Detail & Related papers (2022-10-13T11:45:30Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Deep Reinforcement Learning Assisted Federated Learning Algorithm for
Data Management of IIoT [82.33080550378068]
The continuous expanded scale of the industrial Internet of Things (IIoT) leads to IIoT equipments generating massive amounts of user data every moment.
How to manage these time series data in an efficient and safe way in the field of IIoT is still an open issue.
This paper studies the FL technology applications to manage IIoT equipment data in wireless network environments.
arXiv Detail & Related papers (2022-02-03T07:12:36Z) - Learning to Detect Fortified Areas [0.0]
We consider the problem of classifying which areas of a given surface are fortified by for instance, roads, sidewalks, parking spaces, paved driveways and terraces.
We propose an algorithmic solution by designing a neural net embedding architecture that transforms data from all the different sensor systems into a new common representation.
arXiv Detail & Related papers (2021-05-26T08:03:42Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - On Deep Learning Techniques to Boost Monocular Depth Estimation for
Autonomous Navigation [1.9007546108571112]
Inferring the depth of images is a fundamental inverse problem within the field of Computer Vision.
We propose a new lightweight and fast supervised CNN architecture combined with novel feature extraction models.
We also introduce an efficient surface normals module, jointly with a simple geometric 2.5D loss function, to solve SIDE problems.
arXiv Detail & Related papers (2020-10-13T18:37:38Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.