dlordinal: a Python package for deep ordinal classification
- URL: http://arxiv.org/abs/2407.17163v2
- Date: Thu, 26 Sep 2024 10:07:06 GMT
- Title: dlordinal: a Python package for deep ordinal classification
- Authors: Francisco Bérchez-Moreno, Víctor M. Vargas, Rafael Ayllón-Gavilán, David Guijo-Rubio, César Hervás-Martínez, Juan C. Fernández, Pedro A. Gutiérrez,
- Abstract summary: dlordinal is a new Python library that unifies many recent deep ordinal classification methodologies.
It implements the top performing state-of-the-art deep learning techniques for ordinal classification problems.
- Score: 3.420642569478584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: dlordinal is a new Python library that unifies many recent deep ordinal classification methodologies available in the literature. Developed using PyTorch as underlying framework, it implements the top performing state-of-the-art deep learning techniques for ordinal classification problems. Ordinal approaches are designed to leverage the ordering information present in the target variable. Specifically, it includes loss functions, various output layers, dropout techniques, soft labelling methodologies, and other classification strategies, all of which are appropriately designed to incorporate the ordinal information. Furthermore, as the performance metrics to assess novel proposals in ordinal classification depend on the distance between target and predicted classes in the ordinal scale, suitable ordinal evaluation metrics are also included. dlordinal is distributed under the BSD-3-Clause license and is available at https://github.com/ayrna/dlordinal.
Related papers
- Harnessing Superclasses for Learning from Hierarchical Databases [1.835004446596942]
In many large-scale classification problems, classes are organized in a known hierarchy, typically represented as a tree.
We introduce a loss for this type of supervised hierarchical classification.
Our approach does not entail any significant additional computational cost compared with the loss of cross-entropy.
arXiv Detail & Related papers (2024-11-25T14:39:52Z) - Improving the classification of extreme classes by means of loss regularisation and generalised beta distributions [8.640930010669042]
We propose a unimodal regularisation approach to improve the classification performance of the first and last classes.
Performance in the extreme classes is compared using a new metric that takes into account their sensitivities.
The results for the proposed metric show that the generalised beta distribution generally improves classification performance in the extreme classes.
arXiv Detail & Related papers (2024-07-17T08:57:42Z) - Regularization-Based Methods for Ordinal Quantification [49.606912965922504]
We study the ordinal case, i.e., the case in which a total order is defined on the set of n>2 classes.
We propose a novel class of regularized OQ algorithms, which outperforms existing algorithms in our experiments.
arXiv Detail & Related papers (2023-10-13T16:04:06Z) - Ord2Seq: Regarding Ordinal Regression as Label Sequence Prediction [13.844821175622794]
We propose a simple sequence prediction framework for ordinal regression called Ord2Seq.
We decompose an ordinal regression task into a series of binary classification steps, so as to subtly distinguish adjacent categories.
Our new approach exceeds state-of-the-art performances in four different scenarios.
arXiv Detail & Related papers (2023-07-18T06:44:20Z) - Learning-to-Rank Meets Language: Boosting Language-Driven Ordering
Alignment for Ordinal Classification [60.28913031192201]
We present a novel language-driven ordering alignment method for ordinal classification.
Recent developments in pre-trained vision-language models inspire us to leverage the rich ordinal priors in human language.
Experiments on three ordinal classification tasks, including facial age estimation, historical color image (HCI) classification, and aesthetic assessment demonstrate its promising performance.
arXiv Detail & Related papers (2023-06-24T04:11:31Z) - Class-incremental Novel Class Discovery [76.35226130521758]
We study the new task of class-incremental Novel Class Discovery (class-iNCD)
We propose a novel approach for class-iNCD which prevents forgetting of past information about the base classes.
Our experiments, conducted on three common benchmarks, demonstrate that our method significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-18T13:49:27Z) - Inducing a hierarchy for multi-class classification problems [11.58041597483471]
In applications where categorical labels follow a natural hierarchy, classification methods that exploit the label structure often outperform those that do not.
In this paper, we investigate a class of methods that induce a hierarchy that can similarly improve classification performance over flat classifiers.
We demonstrate the effectiveness of the class of methods both for discovering a latent hierarchy and for improving accuracy in principled simulation settings and three real data applications.
arXiv Detail & Related papers (2021-02-20T05:40:42Z) - Rank over Class: The Untapped Potential of Ranking in Natural Language
Processing [8.637110868126546]
We argue that many tasks which are currently addressed using classification are in fact being shoehorned into a classification mould.
We propose a novel end-to-end ranking approach consisting of a Transformer network responsible for producing representations for a pair of text sequences.
In an experiment on a heavily-skewed sentiment analysis dataset, converting ranking results to classification labels yields an approximately 22% improvement over state-of-the-art text classification.
arXiv Detail & Related papers (2020-09-10T22:18:57Z) - Convolutional Ordinal Regression Forest for Image Ordinal Estimation [52.67784321853814]
We propose a novel ordinal regression approach, termed Convolutional Ordinal Regression Forest or CORF, for image ordinal estimation.
The proposed CORF integrates ordinal regression and differentiable decision trees with a convolutional neural network for obtaining precise and stable global ordinal relationships.
The effectiveness of the proposed CORF is verified on two image ordinal estimation tasks, showing significant improvements and better stability over the state-of-the-art ordinal regression methods.
arXiv Detail & Related papers (2020-08-07T10:41:17Z) - Cautious Active Clustering [79.23797234241471]
We consider the problem of classification of points sampled from an unknown probability measure on a Euclidean space.
Our approach is to consider the unknown probability measure as a convex combination of the conditional probabilities for each class.
arXiv Detail & Related papers (2020-08-03T23:47:31Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.