Domain Generalized Recaptured Screen Image Identification Using SWIN Transformer
- URL: http://arxiv.org/abs/2407.17170v2
- Date: Thu, 25 Jul 2024 06:40:39 GMT
- Title: Domain Generalized Recaptured Screen Image Identification Using SWIN Transformer
- Authors: Preeti Mehta, Aman Sagar, Suchi Kumari,
- Abstract summary: We propose a cascaded data augmentation and SWIN transformer domain generalization framework (DAST-DG)
A feature generator is trained to make authentic images from various domains indistinguishable.
This process is then applied to recaptured images, creating a dual adversarial learning setup.
- Score: 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An increasing number of classification approaches have been developed to address the issue of image rebroadcast and recapturing, a standard attack strategy in insurance frauds, face spoofing, and video piracy. However, most of them neglected scale variations and domain generalization scenarios, performing poorly in instances involving domain shifts, typically made worse by inter-domain and cross-domain scale variances. To overcome these issues, we propose a cascaded data augmentation and SWIN transformer domain generalization framework (DAST-DG) in the current research work Initially, we examine the disparity in dataset representation. A feature generator is trained to make authentic images from various domains indistinguishable. This process is then applied to recaptured images, creating a dual adversarial learning setup. Extensive experiments demonstrate that our approach is practical and surpasses state-of-the-art methods across different databases. Our model achieves an accuracy of approximately 82\% with a precision of 95\% on high-variance datasets.
Related papers
- Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images [63.58800688320182]
Domain Generalization is a challenging task in machine learning.
Current methodology lacks quantitative understanding about shifts in stylistic domain.
We introduce a new DG paradigm to address these risks.
arXiv Detail & Related papers (2024-05-24T22:13:31Z) - Self-supervised Domain-agnostic Domain Adaptation for Satellite Images [18.151134198549574]
We propose an self-supervised domain-agnostic domain adaptation (SS(DA)2) method to perform domain adaptation without such a domain definition.
We first design a contrastive generative adversarial loss to train a generative network to perform image-to-image translation between any two satellite image patches.
Then, we improve the generalizability of the downstream models by augmenting the training data with different testing spectral characteristics.
arXiv Detail & Related papers (2023-09-20T07:37:23Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Single Domain Dynamic Generalization for Iris Presentation Attack
Detection [41.126916126040655]
Iris presentation generalization has achieved great success under intra-domain settings but easily degrades on unseen domains.
We propose a Single Domain Dynamic Generalization (SDDG) framework, which exploits domain-invariant and domain-specific features on a per-sample basis.
The proposed method is effective and outperforms the state-of-the-art on LivDet-Iris 2017 dataset.
arXiv Detail & Related papers (2023-05-22T07:54:13Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Improving Diversity with Adversarially Learned Transformations for
Domain Generalization [81.26960899663601]
We present a novel framework that uses adversarially learned transformations (ALT) using a neural network to model plausible, yet hard image transformations.
We show that ALT can naturally work with existing diversity modules to produce highly distinct, and large transformations of the source domain leading to state-of-the-art performance.
arXiv Detail & Related papers (2022-06-15T18:05:24Z) - Scale Invariant Domain Generalization Image Recapture Detection [3.210092699356333]
We propose a scale alignment domain generalization framework (SADG) to address these challenges.
First, an adversarial domain discriminator is exploited to minimize the discrepancies of image representation distributions.
Finally, a scale alignment loss is introduced as a global relationship regularization to force the image representations of the same class across different scales to be undistinguishable.
arXiv Detail & Related papers (2021-10-07T14:32:56Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - CrDoCo: Pixel-level Domain Transfer with Cross-Domain Consistency [119.45667331836583]
Unsupervised domain adaptation algorithms aim to transfer the knowledge learned from one domain to another.
We present a novel pixel-wise adversarial domain adaptation algorithm.
arXiv Detail & Related papers (2020-01-09T19:00:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.