論文の概要: Statistical Batch-Based Bearing Fault Detection
- arxiv url: http://arxiv.org/abs/2407.17236v2
- Date: Thu, 25 Jul 2024 06:21:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 12:59:24.417929
- Title: Statistical Batch-Based Bearing Fault Detection
- Title(参考訳): 統計的バッチに基づく軸受故障検出
- Authors: Victoria Jorry, Zina-Sabrina Duma, Tuomas Sihvonen, Satu-Pia Reinikainen, Lassi Roininen,
- Abstract要約: 回転機械の領域では、ベアリングはボール、インナーおよびアウターレース断層を含む異なる機械的断層に対して脆弱である。
古典的な信号分析から深層学習まで、様々な手法が条件に基づくモニタリングに利用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of rotating machinery, bearings are vulnerable to different mechanical faults, including ball, inner, and outer race faults. Various techniques can be used in condition-based monitoring, from classical signal analysis to deep learning methods. Based on the complex working conditions of rotary machines, multivariate statistical process control charts such as Hotelling's $T^2$ and Squared Prediction Error are useful for providing early warnings. However, these methods are rarely applied to condition monitoring of rotating machinery due to the univariate nature of the datasets. In the present paper, we propose a multivariate statistical process control-based fault detection method that utilizes multivariate data composed of Fourier transform features extracted for fixed-time batches. Our approach makes use of the multidimensional nature of Fourier transform characteristics, which record more detailed information about the machine's status, in an effort to enhance early defect detection and diagnosis. Experiments with varying vibration measurement locations (Fan End, Drive End), fault types (ball, inner, and outer race faults), and motor loads (0-3 horsepower) are used to validate the suggested approach. The outcomes illustrate our method's effectiveness in fault detection and point to possible broader uses in industrial maintenance.
- Abstract(参考訳): 回転機械の領域では、ベアリングはボール、インナーおよびアウターレース断層を含む異なる機械的断層に対して脆弱である。
古典的な信号分析から深層学習まで、様々な手法が条件に基づくモニタリングに利用できる。
回転機械の複雑な作業条件に基づいて、Hotellingの$T^2$やSquared Prediction Errorのような多変量統計処理制御チャートは早期警告を提供するのに有用である。
しかし、これらの手法は、データセットの単変量性のため、回転機械の状態監視にはほとんど適用されない。
本稿では,固定時間バッチに対して抽出したフーリエ変換特徴からなる多変量データを用いた多変量統計処理制御に基づく故障検出手法を提案する。
本手法では, 早期の欠陥検出と診断を向上するために, マシンの状態に関するより詳細な情報を記録するフーリエ変換特性の多次元特性を利用する。
様々な振動測定地点(ファンエンド,ドライブエンド)、断層タイプ(ボール,インナーおよびアウターレースフォールト)およびモータ負荷(0-3馬力)を用いて提案手法の有効性を検証する。
その結果, 異常検出における本手法の有効性が示され, 産業保守における幅広い利用の可能性が示唆された。
関連論文リスト
- Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - Enhancing Functional Safety in Automotive AMS Circuits through Unsupervised Machine Learning [9.100418852199082]
AMS回路における早期異常検出のための教師なし機械学習に基づく新しいフレームワークを提案する。
提案手法では、様々な回路位置や個々のコンポーネントに異常を注入して、多種多様な総合的な異常データセットを作成する。
これらの異常条件下でのシステムの挙動をモニタリングすることにより、異常の伝播とその影響を異なる抽象レベルで捉える。
論文 参考訳(メタデータ) (2024-04-02T04:33:03Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Novel features for the detection of bearing faults in railway vehicles [88.89591720652352]
我々は,Mel-Frequency Cepstral Coefficients (MFCCs) とAmplitude Modulation Spectrogram (AMS) から抽出した特徴を,軸受欠陥の検出のための特徴として紹介する。
論文 参考訳(メタデータ) (2023-04-14T10:09:50Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - A Vision Transformer-Based Approach to Bearing Fault Classification via
Vibration Signals [4.287341231968003]
本研究では、現状のViT(Vision Transformer)を用いて、ベアリング欠陥を分類する。
このモデル全体の精度は98.8%に達した。
論文 参考訳(メタデータ) (2022-08-15T08:37:30Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
実際には、デプロイされたモデルのパフォーマンスが大幅に低下しないという、良心的なシフトを無視することは理にかなっている。
我々は,警告を発射する有効な方法は,(a)良性な警告を無視しながら有害なシフトを検知し,(b)誤報率を増大させることなく,モデル性能の連続的なモニタリングを可能にすることを論じる。
論文 参考訳(メタデータ) (2021-10-12T17:21:41Z) - An Explainable Artificial Intelligence Approach for Unsupervised Fault
Detection and Diagnosis in Rotating Machinery [2.055054374525828]
本稿では,回転機械の故障検出と診断のための新しい手法を提案する。
この手法は,特徴抽出,障害検出,障害診断の3つの部分からなる。
提案手法の有効性は,機械的故障の異なる3つのデータセットに示される。
論文 参考訳(メタデータ) (2021-02-23T18:28:18Z) - Autoencoder-based Condition Monitoring and Anomaly Detection Method for
Rotating Machines [0.19116784879310028]
自動エンコーダモデルに基づく回転機の状態監視手法を異常検出手法を用いて提案する。
提案手法は, 生の振動信号から塩分の特徴を直接抽出できる。
2つの実世界のデータセットにおける実験結果は、提案手法が有望な結果をもたらすことを示している。
論文 参考訳(メタデータ) (2021-01-27T16:49:49Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
多くの構造健康モニタリング(SHM)システムが、土木インフラを監視するために配備されている。
SHMシステムによって測定されたデータは、故障または故障したセンサーによって引き起こされる複数の異常によって影響を受ける傾向にある。
本稿では,SHMデータの異常を自律的に識別するために,Shapelet Transformという比較的新しい時系列表現を提案する。
論文 参考訳(メタデータ) (2020-08-31T01:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。