SCIsegV2: A Universal Tool for Segmentation of Intramedullary Lesions in Spinal Cord Injury
- URL: http://arxiv.org/abs/2407.17265v1
- Date: Wed, 24 Jul 2024 13:29:17 GMT
- Title: SCIsegV2: A Universal Tool for Segmentation of Intramedullary Lesions in Spinal Cord Injury
- Authors: Enamundram Naga Karthik, Jan Valošek, Lynn Farner, Dario Pfyffer, Simon Schading-Sassenhausen, Anna Lebret, Gergely David, Andrew C. Smith, Kenneth A. Weber II, Maryam Seif, RHSCIR Network Imaging Group, Patrick Freund, Julien Cohen-Adad,
- Abstract summary: The tool was trained and validated on a heterogeneous dataset from 7 sites.
TextttSCIsegV2 and the automatic tissue bridges quantified are open-source and available in Spinal Cord Toolbox.
- Score: 0.0340536098865017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spinal cord injury (SCI) is a devastating incidence leading to permanent paralysis and loss of sensory-motor functions potentially resulting in the formation of lesions within the spinal cord. Imaging biomarkers obtained from magnetic resonance imaging (MRI) scans can predict the functional recovery of individuals with SCI and help choose the optimal treatment strategy. Currently, most studies employ manual quantification of these MRI-derived biomarkers, which is a subjective and tedious task. In this work, we propose (i) a universal tool for the automatic segmentation of intramedullary SCI lesions, dubbed \texttt{SCIsegV2}, and (ii) a method to automatically compute the width of the tissue bridges from the segmented lesion. Tissue bridges represent the spared spinal tissue adjacent to the lesion, which is associated with functional recovery in SCI patients. The tool was trained and validated on a heterogeneous dataset from 7 sites comprising patients from different SCI phases (acute, sub-acute, and chronic) and etiologies (traumatic SCI, ischemic SCI, and degenerative cervical myelopathy). Tissue bridges quantified automatically did not significantly differ from those computed manually, suggesting that the proposed automatic tool can be used to derive relevant MRI biomarkers. \texttt{SCIsegV2} and the automatic tissue bridges computation are open-source and available in Spinal Cord Toolbox (v6.4 and above) via the \texttt{sct\_deepseg -task seg\_sc\_lesion\_t2w\_sci} and \texttt{sct\_analyze\_lesion} functions, respectively.
Related papers
- An Integrated Deep Learning Framework for Effective Brain Tumor Localization, Segmentation, and Classification from Magnetic Resonance Images [0.0]
Tumors in the brain result from abnormal cell growth within the brain tissue, arising from various types of brain cells.
Our research proposes DL frameworks for localizing, segmenting, and classifying the grade of these gliomas from MRI images to solve this critical issue.
Our proposed models demonstrated promising results, with the potential to advance medical AI by enabling early diagnosis and providing more accurate treatment options for patients.
arXiv Detail & Related papers (2024-09-25T18:38:57Z) - Meta-Analysis of Transfer Learning for Segmentation of Brain Lesions [0.0]
Manual segmentation of stroke lesions from 3D magnetic resonance (MR) imaging volumes, the current gold standard, is not only very time-consuming, but its accuracy highly depends on the operator's experience.
We have implemented and tested a fully automatic method for stroke lesion segmentation using eight different 2D-model architectures trained via transfer learning (TL) and mixed data approaches.
Cross-validation results indicate that our new method can efficiently and automatically segment lesions fast and with high accuracy compared to ground truth.
arXiv Detail & Related papers (2023-06-20T17:42:30Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
This paper proposes a novel transformer-based model architecture for medical imaging problems involving analysis of vertebrae.
It considers two applications of such models in MR images: (a) detection of spinal metastases and the related conditions of vertebral fractures and metastatic cord compression.
We show that by considering the context of vertebral bodies in the image, SCT improves the accuracy for several gradings compared to previously published model.
arXiv Detail & Related papers (2022-06-27T10:31:03Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
We propose a weakly-supervised deep learning framework that preserves the rigidity and the volume of each vertebra while maximizing the accuracy of the registration.
We specifically design these losses to depend only on the CT label maps since automatic vertebra segmentation in CT gives more accurate results contrary to MRI.
Our results show that adding the anatomy-aware losses increases the plausibility of the inferred transformation while keeping the accuracy untouched.
arXiv Detail & Related papers (2022-05-16T10:59:55Z) - SpineNetV2: Automated Detection, Labelling and Radiological Grading Of
Clinical MR Scans [70.04389979779195]
SpineNetV2 is an automated tool which detects and labels vertebral bodies in clinical spinal magnetic resonance (MR) scans.
It also performs radiological grading of lumbar intervertebral discs in T2-weighted scans for a range of common degenerative changes.
arXiv Detail & Related papers (2022-05-03T15:05:58Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
We propose a one-stage detection framework termed SpineOne to simultaneously localize and classify degenerative discs and vertebrae from MRI slices.
SpineOne is built upon the following three key techniques: 1) a new design of the keypoint heatmap to facilitate simultaneous keypoint localization and classification; 2) the use of attention modules to better differentiate the representations between discs and vertebrae; and 3) a novel gradient-guided objective association mechanism to associate multiple learning objectives at the later training stage.
arXiv Detail & Related papers (2021-10-28T12:59:06Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
We propose a novel convolutional method for the detection and identification of vertebrae in whole spine MRIs.
This involves using a learnt vector field to group detected vertebrae corners together into individual vertebral bodies.
We demonstrate the clinical applicability of this method, using it for automated scoliosis detection in both lumbar and whole spine MR scans.
arXiv Detail & Related papers (2020-07-06T09:37:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.