Entropy augmentation through subadditive excess: information theory in irreversible processes
- URL: http://arxiv.org/abs/2407.17322v1
- Date: Wed, 24 Jul 2024 14:47:14 GMT
- Title: Entropy augmentation through subadditive excess: information theory in irreversible processes
- Authors: Jürgen T. Stockburger,
- Abstract summary: The Boltzmann equation seems unique in its capacity to accurately describe the transition from almost any initial state to a self-equilibrated thermal state.
An increase of the Gibbs-Shannon-von entropy results without the usual coarse-graining.
The mathematical structure of the ansatz also provides avenues for efficient computation and simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within its range of applicability, the Boltzmann equation seems unique in its capacity to accurately describe the transition from almost any initial state to a self-equilibrated thermal state. Using information-theoretic methods to rephrase the key idea of Maxwell and Boltzmann, the Sto{\ss}zahlansatz, a far more general, abstract ansatz is developed. An increase of the Gibbs-Shannon-von Neumann entropy results without the usual coarse-graining. The mathematical structure of the ansatz also provides avenues for efficient computation and simulation.
Related papers
- Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - On the generic increase of observational entropy in isolated systems [6.874745415692133]
We show how observational entropy of a system undergoing a unitary evolution chosen at random tends to increase with overwhelming probability.
We show that for any observation that is sufficiently coarse with respect to the size of the system, regardless of the initial state of the system, random evolution renders its state practically indistinguishable from the microcanonical distribution.
arXiv Detail & Related papers (2024-04-18T08:27:04Z) - Asymptotic Equipartition Theorems in von Neumann algebras [24.1712628013996]
We show that the smooth max entropy of i.i.d. states on a von Neumann algebra has an rate given by the quantum relative entropy.
Our AEP not only applies to states, but also to quantum channels with appropriate restrictions.
arXiv Detail & Related papers (2022-12-30T13:42:35Z) - Integral formula for quantum relative entropy implies data processing
inequality [0.0]
We prove the monotonicity of quantum relative entropy under trace-preserving positive linear maps.
For a simple application of such monotonicities, we consider any divergence' that is non-increasing under quantum measurements.
An argument due to Hiai, Ohya, and Tsukada is used to show that the infimum of such a divergence' on pairs of quantum states with prescribed trace distance is the same as the corresponding infimum on pairs of binary classical states.
arXiv Detail & Related papers (2022-08-25T16:32:02Z) - Local Additivity Revisited [0.0]
We make a number of simplifications in Gour and Friedland's proof of local additivity of minimum output entropy of a quantum channel.
We use a different approach to reduce the general case to that of a square positive definite matrix.
We extend this result to the maximum relative entropy with respect to a fixed reference state.
arXiv Detail & Related papers (2021-11-22T17:51:24Z) - Kurtosis of von Neumann entanglement entropy [2.88199186901941]
We study the statistical behavior of entanglement in quantum bipartite systems under the Hilbert-Schmidt ensemble.
The main contribution of the present work is the exact formula of the corresponding fourth cumulant that controls the tail behavior of the distribution.
arXiv Detail & Related papers (2021-07-21T22:20:10Z) - Maximum Entropy Reinforcement Learning with Mixture Policies [54.291331971813364]
We construct a tractable approximation of the mixture entropy using MaxEnt algorithms.
We show that it is closely related to the sum of marginal entropies.
We derive an algorithmic variant of Soft Actor-Critic (SAC) to the mixture policy case and evaluate it on a series of continuous control tasks.
arXiv Detail & Related papers (2021-03-18T11:23:39Z) - Action Redundancy in Reinforcement Learning [54.291331971813364]
We show that transition entropy can be described by two terms; namely, model-dependent transition entropy and action redundancy.
Our results suggest that action redundancy is a fundamental problem in reinforcement learning.
arXiv Detail & Related papers (2021-02-22T19:47:26Z) - Shannon Entropy Rate of Hidden Markov Processes [77.34726150561087]
We show how to calculate entropy rates for hidden Markov chains.
We also show how this method gives the minimal set of infinite predictive features.
A sequel addresses the challenge's second part on structure.
arXiv Detail & Related papers (2020-08-29T00:48:17Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.