Quantum nonlocal modulation cancellation with distributed clocks
- URL: http://arxiv.org/abs/2407.17330v1
- Date: Wed, 24 Jul 2024 14:53:58 GMT
- Title: Quantum nonlocal modulation cancellation with distributed clocks
- Authors: Stephen D. Chapman, Suparna Seshadri, Joseph M. Lukens, Nicholas A. Peters, Jason D. McKinney, Andrew M. Weiner, Hsuan-Hao Lu,
- Abstract summary: We demonstrate nonlocal modulation of entangled photons with truly distributed RF clocks.
We multiplex the RFoF clock with one photon from a frequency-bin-entangled pair and distributing the coexisting quantum-classical signals over fiber.
- Score: 0.33827079164159196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate nonlocal modulation of entangled photons with truly distributed RF clocks. Leveraging a custom radio-over-fiber (RFoF) system characterized via classical spectral interference, we validate its effectiveness for quantum networking by multiplexing the RFoF clock with one photon from a frequency-bin-entangled pair and distributing the coexisting quantum-classical signals over fiber. Phase modulation of the two photons reveals nonlocal correlations in excellent agreement with theory: in-phase modulation produces additional sidebands in the joint spectral intensity, while out-of-phase modulation is nonlocally canceled. Our simple, feedback-free design attains sub-picosecond synchronization -- namely, drift less than $\sim$0.5 ps in a 5.5 km fiber over 30 min (fractionally only $\sim$2$\times$10$^{-8}$ of the total fiber delay) -- and should facilitate frequency-encoded quantum networking protocols such as high-dimensional quantum key distribution and entanglement swapping, unlocking frequency-bin qubits for practical quantum communications in deployed metropolitan-scale networks.
Related papers
- Metropolitan-scale Entanglement Distribution with Co-existing Quantum
and Classical Signals in a single fiber [0.0]
Development of prototype metropolitan-scale quantum networks involves transmitting quantum information via deployed optical fibers.
One approach addressing these challenges is to co-propagate classical probe signals in the same fiber as the quantum signal.
Here, we demonstrate the distribution of polarization entangled quantum signals co-propagating with the White Rabbit Precision Time Protocol (WR-PTP) classical signals in the same single-core fiber strand at metropolitan-scale distances.
arXiv Detail & Related papers (2024-02-01T14:21:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Two-mode squeezing over deployed fiber coexisting with conventional
communications [55.41644538483948]
Multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing.
To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments.
This demonstration enables future applications in quantum networks and quantum sensing that rely on distributed multi-mode squeezing.
arXiv Detail & Related papers (2023-04-20T02:29:33Z) - Time-resolved Hanbury Brown-Twiss interferometry of on-chip biphoton
frequency combs using Vernier phase modulation [0.0]
Biphoton frequency combs (BFCs) are promising quantum sources for large-scale and high-dimensional quantum information and networking systems.
Measurement of the temporal auto-correlation function of the unheralded signal or idler photons comprising the BFC is a key tool for characterizing their spectral purity.
We propose a scheme to circumvent this challenge through electro-optic phase modulation.
arXiv Detail & Related papers (2022-10-11T17:08:22Z) - Frequency combs with parity-protected cross-correlations from
dynamically modulated qubit arrays [117.44028458220427]
We develop a general theoretical framework to dynamically engineer quantum correlations in the frequency-comb emission from an array of superconducting qubits in a waveguide.
We demonstrate, that when the resonance of the two qubits are periodically modulated with a $pi$ phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations of the scattered photons from different sidebands.
arXiv Detail & Related papers (2022-03-01T13:12:45Z) - GHz-Pulsed Source of Entangled Photons for Reconfigurable Quantum
Networks [0.0]
Entanglement is a universal resource in quantum networks, yet entangled photon sources are typically custom-made for a specific use case.
Here, we report on a flexible source design that produces high-quality entanglement in continuous-wave and GHz-rate-pulsed operation modes.
arXiv Detail & Related papers (2022-01-21T17:52:52Z) - Frequency-bin entanglement from domain-engineered down-conversion [101.18253437732933]
We present a single-pass source of discrete frequency-bin entanglement which does not use filtering or a resonant cavity.
We use a domain-engineered nonlinear crystal to generate an eight-mode frequency-bin entangled source at telecommunication wavelengths.
arXiv Detail & Related papers (2022-01-18T19:00:29Z) - Spectral control of nonclassical light using an integrated thin-film
lithium niobate modulator [5.119503410288866]
We demonstrate frequency shifting and bandwidth compression of nonclassical light using an integrated thin-film lithium niobate (TFLN) phase modulator.
We achieve record-high electro-optic frequency shearing of telecom single photons over terahertz range.
Our results showcase the viability and promise of on-chip quantum spectral control for scalable photonic quantum information processing.
arXiv Detail & Related papers (2021-12-18T16:38:00Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.