Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising
- URL: http://arxiv.org/abs/2407.17399v1
- Date: Wed, 24 Jul 2024 16:23:46 GMT
- Title: Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising
- Authors: Sébastien Herbreteau, Michael Unser,
- Abstract summary: Supervised deep learning has become the method of choice for image denoising.
We show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising.
- Score: 19.08732222562782
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Supervised deep learning has become the method of choice for image denoising. It involves the training of neural networks on large datasets composed of pairs of noisy and clean images. However, the necessity of training data that are specific to the targeted application constrains the widespread use of denoising networks. Recently, several approaches have been developed to overcome this difficulty by whether artificially generating realistic clean/noisy image pairs, or training exclusively on noisy images. In this paper, we show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising, even without additional training. For this to happen, an appropriate variance-stabilizing transform (VST) has to be applied beforehand. We propose an algorithm termed Noise2VST for the learning of such a model-free VST. Our approach requires only the input noisy image and an off-the-shelf Gaussian denoiser. We demonstrate through extensive experiments the efficiency and superiority of Noise2VST in comparison to existing methods trained in the absence of specific clean/noisy pairs.
Related papers
- Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Deep Variation Prior: Joint Image Denoising and Noise Variance
Estimation without Clean Data [2.3061446605472558]
This paper investigates the tasks of image denoising and noise variance estimation in a single, joint learning framework.
We build upon DVP, an unsupervised deep learning framework, that simultaneously learns a denoiser and estimates noise variances.
Our method does not require any clean training images or an external step of noise estimation, and instead, approximates the minimum mean squared error denoisers using only a set of noisy images.
arXiv Detail & Related papers (2022-09-19T17:29:32Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.