PEEKABOO: Hiding parts of an image for unsupervised object localization
- URL: http://arxiv.org/abs/2407.17628v1
- Date: Wed, 24 Jul 2024 20:35:20 GMT
- Title: PEEKABOO: Hiding parts of an image for unsupervised object localization
- Authors: Hasib Zunair, A. Ben Hamza,
- Abstract summary: Localizing objects in an unsupervised manner poses significant challenges due to the absence of key visual information.
We propose a single-stage learning framework, dubbed PEEKABOO, for unsupervised object localization.
The key idea is to selectively hide parts of an image and leverage the remaining image information to infer the location of objects without explicit supervision.
- Score: 7.161489957025654
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Localizing objects in an unsupervised manner poses significant challenges due to the absence of key visual information such as the appearance, type and number of objects, as well as the lack of labeled object classes typically available in supervised settings. While recent approaches to unsupervised object localization have demonstrated significant progress by leveraging self-supervised visual representations, they often require computationally intensive training processes, resulting in high resource demands in terms of computation, learnable parameters, and data. They also lack explicit modeling of visual context, potentially limiting their accuracy in object localization. To tackle these challenges, we propose a single-stage learning framework, dubbed PEEKABOO, for unsupervised object localization by learning context-based representations at both the pixel- and shape-level of the localized objects through image masking. The key idea is to selectively hide parts of an image and leverage the remaining image information to infer the location of objects without explicit supervision. The experimental results, both quantitative and qualitative, across various benchmark datasets, demonstrate the simplicity, effectiveness and competitive performance of our approach compared to state-of-the-art methods in both single object discovery and unsupervised salient object detection tasks. Code and pre-trained models are available at: https://github.com/hasibzunair/peekaboo
Related papers
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Unsupervised learning based object detection using Contrastive Learning [6.912349403119665]
We introduce a groundbreaking method for training single-stage object detectors through unsupervised/self-supervised learning.
Our state-of-the-art approach has the potential to revolutionize the labeling process, substantially reducing the time and cost associated with manual annotation.
We pioneer the concept of intra-image contrastive learning alongside inter-image counterparts, enabling the acquisition of crucial location information.
arXiv Detail & Related papers (2024-02-21T01:44:15Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Unsupervised Object Localization: Observing the Background to Discover
Objects [4.870509580034194]
In this work, we take a different approach and propose to look for the background instead.
This way, the salient objects emerge as a by-product without any strong assumption on what an object should be.
We propose FOUND, a simple model made of a single $conv1times1$ with coarse background masks extracted from self-supervised patch-based representations.
arXiv Detail & Related papers (2022-12-15T13:43:11Z) - On the robustness of self-supervised representations for multi-view
object classification [0.0]
We show that self-supervised representations based on the instance discrimination objective lead to better representations of objects that are more robust to changes in the viewpoint and perspective of the object.
We find that self-supervised representations are more robust to object viewpoint and appear to encode more pertinent information about objects that facilitate the recognition of objects from novel views.
arXiv Detail & Related papers (2022-07-27T17:24:55Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
We propose a new self-supervised pretext task, called instance localization.
We show that integration of bounding boxes into pretraining promotes better task alignment and architecture alignment for transfer learning.
Experimental results demonstrate that our approach yields state-of-the-art transfer learning results for object detection.
arXiv Detail & Related papers (2021-02-16T17:58:57Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Learning Object Detection from Captions via Textual Scene Attributes [70.90708863394902]
We argue that captions contain much richer information about the image, including attributes of objects and their relations.
We present a method that uses the attributes in this "textual scene graph" to train object detectors.
We empirically demonstrate that the resulting model achieves state-of-the-art results on several challenging object detection datasets.
arXiv Detail & Related papers (2020-09-30T10:59:20Z) - Co-training for On-board Deep Object Detection [0.0]
Best performing deep vision-based object detectors are trained in a supervised manner by relying on human-labeled bounding boxes.
Co-training is a semi-supervised learning method for self-labeling objects in unlabeled images.
We show how co-training is a paradigm worth to pursue for alleviating object labeling, working both alone and together with task-agnostic domain adaptation.
arXiv Detail & Related papers (2020-08-12T19:08:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.