論文の概要: Discretized Quantum Exhaustive Search for Variational Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2407.17659v1
- Date: Wed, 24 Jul 2024 22:06:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:47:21.281861
- Title: Discretized Quantum Exhaustive Search for Variational Quantum Algorithms
- Title(参考訳): 変分量子アルゴリズムにおける離散量子抽出探索
- Authors: Dekel Meirom, Ittay Alfassi, Tal Mor,
- Abstract要約: 現在利用可能な量子デバイスは、限られた量子ビットと高いレベルのノイズしか持たず、それらのデバイスで正確に解決できる問題のサイズを制限している。
我々は、変分量子アルゴリズム -- 離散化量子排他探索 -- を改善する新しい方法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers promise a great computational advantage over classical computers, yet currently available quantum devices have only a limited amount of qubits and a high level of noise, limiting the size of problems that can be solved accurately with those devices. Variational Quantum Algorithms (VQAs) have emerged as a leading strategy to address these limitations by optimizing cost functions based on measurement results of shallow-depth circuits. However, the optimization process usually suffers from severe trainability issues as a result of the exponentially large search space, mainly local minima and barren plateaus. Here we propose a novel method that can improve variational quantum algorithms -- ``discretized quantum exhaustive search''. On classical computers, exhaustive search, also named brute force, solves small-size NP complete and NP hard problems. Exhaustive search and efficient partial exhaustive search help designing heuristics and exact algorithms for solving larger-size problems by finding easy subcases or good approximations. We adopt this method to the quantum domain, by relying on mutually unbiased bases for the $2^n$-dimensional Hilbert space. We define a discretized quantum exhaustive search that works well for small size problems. We provide an example of an efficient partial discretized quantum exhaustive search for larger-size problems, in order to extend classical tools to the quantum computing domain, for near future and far future goals. Our method enables obtaining intuition on NP-complete and NP-hard problems as well as on Quantum Merlin Arthur (QMA)-complete and QMA-hard problems. We demonstrate our ideas in many simple cases, providing the energy landscape for various problems and presenting two types of energy curves via VQAs.
- Abstract(参考訳): 量子コンピュータは、古典的コンピュータよりも大きな計算上の優位性を約束するが、現在利用可能な量子デバイスは、限られた量子ビットと高いレベルのノイズしか持たず、それらのデバイスで正確に解決できる問題のサイズを制限している。
変動量子アルゴリズム (VQA) は、浅層深度回路の測定結果に基づいてコスト関数を最適化することにより、これらの制限に対処する主要な戦略として登場した。
しかし、最適化プロセスは通常、局所的なミニマや不毛の台地など、指数関数的に大きい探索空間の結果として、厳しい訓練性の問題に悩まされる。
本稿では,変分量子アルゴリズムを改良する新しい手法,<discretized quantum exhaustive search'を提案する。
古典的コンピュータでは、網羅的な探索もブルートフォースと呼ばれ、小型のNP完全およびNP困難問題を解く。
探索的探索と効率的な部分的探索は、簡単な部分ケースや良い近似を見つけることで、より大規模な問題を解決するためのヒューリスティックや正確なアルゴリズムを設計するのに役立つ。
我々はこの手法を量子領域に適用し、2^n$次元ヒルベルト空間に対して互いに偏りのない基底を頼りにしている。
我々は、小さな問題に対してうまく機能する離散化された量子包絡探索を定義する。
本稿では,従来のツールを量子コンピューティング領域に拡張するために,より大規模な問題に対する効率的な部分的離散化量子徹底探索の例を示す。
提案手法は,NP完全問題,NP完全問題,および量子メルリン・アーサー問題(QMA)完全問題,QMAハード問題に対する直観を得ることを可能にする。
様々な問題に対してエネルギーランドスケープを提供し、VQAを介して2種類のエネルギー曲線を提示する。
関連論文リスト
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - A Quantum Algorithm Based Heuristic to Hide Sensitive Itemsets [1.8419202109872088]
データ共有の文脈において、よく研究された問題を解決するための量子的アプローチを提案する。
本稿では, 量子アルゴリズムを用いて, この問題の解決方法を示すために, 小型データセットを用いた実験を行った。
論文 参考訳(メタデータ) (2024-02-12T20:44:46Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - Making the cut: two methods for breaking down a quantum algorithm [0.0]
現在、ノイズの多い小規模量子ハードウェアの時代において、計算上の優位性に達する可能性のある量子アルゴリズムを見つけることは、依然として大きな課題である。
我々は、量子アルゴリズムを低い(クエリ)深さのラウンドに分解する2つの方法を特定し、特徴付ける。
最初の問題では並列化が最高のパフォーマンスを提供するのに対し、2番目はより良い選択であることを示す。
論文 参考訳(メタデータ) (2023-05-17T18:00:06Z) - Solving various NP-Hard problems using exponentially fewer qubits on a
Quantum Computer [0.0]
NPハード問題は、一般時間アルゴリズムで正確に解けるとは考えられていない。
本稿では,問題のサイズに応じて対数的にスケールする独自手法を構築した。
これらのアルゴリズムは、100以上のノードのグラフサイズを持つ量子シミュレータと、256のグラフサイズまでの実際の量子コンピュータでテストされる。
論文 参考訳(メタデータ) (2023-01-17T16:03:33Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
量子アルゴリズムにおける最悪のケースと平均ケースの削減を設計する問題について検討する。
量子アルゴリズムの明示的で効率的な変換は、入力のごく一部でのみ正し、全ての入力で正しくなる。
論文 参考訳(メタデータ) (2022-12-06T22:01:49Z) - Multiple Query Optimization using a Hybrid Approach of Classical and
Quantum Computing [1.7077661158850292]
データ集約的な問題領域において重要なNPハード問題である多重クエリ最適化問題(MQO)に取り組む。
ゲート型量子コンピュータ上でMQOを解くために,新しい古典量子アルゴリズムを提案する。
提案アルゴリズムでは, クビット効率が99%に近づき, ほぼ2倍に向上した。
論文 参考訳(メタデータ) (2021-07-22T08:12:49Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - On Applying the Lackadaisical Quantum Walk Algorithm to Search for
Multiple Solutions on Grids [63.75363908696257]
不足量子ウォーク(英: lackadaisical quantum walk)は、頂点が重量$l$の自己ループを持つグラフ構造を探索するために開発されたアルゴリズムである。
本稿では,グリッド上の複数解の探索に不連続な量子ウォークを適用した際の問題に対処する。
論文 参考訳(メタデータ) (2021-06-11T09:43:09Z) - Hardware Efficient Quantum Search Algorithm [17.74233101199813]
本稿では,この課題を克服するために,ハードウェアの効率的な量子探索アルゴリズムを提案する。
我々の鍵となる考え方は、グローバル拡散操作を低コストな局所拡散に置き換えることである。
回路コストの削減は、システムの成功率を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T01:08:50Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。