論文の概要: SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification
- arxiv url: http://arxiv.org/abs/2407.17689v1
- Date: Thu, 25 Jul 2024 01:12:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:37:23.592650
- Title: SAM-MIL: A Spatial Contextual Aware Multiple Instance Learning Approach for Whole Slide Image Classification
- Title(参考訳): SAM-MIL:全スライド画像分類のための空間文脈認識型マルチインスタンス学習手法
- Authors: Heng Fang, Sheng Huang, Wenhao Tang, Luwen Huangfu, Bo Liu,
- Abstract要約: 本研究では,空間的文脈認識を重視し,空間的文脈を明示的に取り入れた新しいMILフレームワークSAM-MILを提案する。
提案手法は,空間的文脈に基づくグループ特徴抽出とSAM-Guided Group Masking戦略を含む。
CAMELYON-16およびTCGA肺がんデータセットの実験結果から,提案したSAM-MILモデルは,WSIs分類において既存の主流手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 9.69491390062406
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multiple Instance Learning (MIL) represents the predominant framework in Whole Slide Image (WSI) classification, covering aspects such as sub-typing, diagnosis, and beyond. Current MIL models predominantly rely on instance-level features derived from pretrained models such as ResNet. These models segment each WSI into independent patches and extract features from these local patches, leading to a significant loss of global spatial context and restricting the model's focus to merely local features. To address this issue, we propose a novel MIL framework, named SAM-MIL, that emphasizes spatial contextual awareness and explicitly incorporates spatial context by extracting comprehensive, image-level information. The Segment Anything Model (SAM) represents a pioneering visual segmentation foundational model that can capture segmentation features without the need for additional fine-tuning, rendering it an outstanding tool for extracting spatial context directly from raw WSIs. Our approach includes the design of group feature extraction based on spatial context and a SAM-Guided Group Masking strategy to mitigate class imbalance issues. We implement a dynamic mask ratio for different segmentation categories and supplement these with representative group features of categories. Moreover, SAM-MIL divides instances to generate additional pseudo-bags, thereby augmenting the training set, and introduces consistency of spatial context across pseudo-bags to further enhance the model's performance. Experimental results on the CAMELYON-16 and TCGA Lung Cancer datasets demonstrate that our proposed SAM-MIL model outperforms existing mainstream methods in WSIs classification. Our open-source implementation code is is available at https://github.com/FangHeng/SAM-MIL.
- Abstract(参考訳): MIL(Multiple Instance Learning)は、WSI(Whole Slide Image)分類において、サブタイピングや診断などの側面をカバーする主要なフレームワークである。
現在のMILモデルは、主にResNetのような事前訓練されたモデルから派生したインスタンスレベルの機能に依存している。
これらのモデルは各WSIを独立したパッチに分割し、これらのローカルパッチから特徴を抽出する。
本稿では,空間的文脈認識を重視し,包括的画像レベルの情報を抽出することによって空間的文脈を明示的に組み込む新しいMILフレームワークであるSAM-MILを提案する。
Segment Anything Model (SAM)は、セグメンテーション機能を追加の微調整なしにキャプチャできる先駆的なビジュアルセグメンテーション基盤モデルであり、生のWSIから直接空間コンテキストを抽出するための優れたツールである。
提案手法は,空間的文脈に基づくグループ特徴抽出と,クラス不均衡を緩和するためのSAM-Guided Group Masking戦略を含む。
分類分類の異なるカテゴリに対して動的マスク比を実装し,これらをカテゴリの代表群特徴で補足する。
さらに、SAM-MILはインスタンスを分割して追加の擬似バグを生成し、トレーニングセットを増強し、擬似バグ間の空間コンテキストの整合性を導入し、モデルの性能をさらに向上させる。
CAMELYON-16およびTCGA肺がんデータセットの実験結果から,提案したSAM-MILモデルは,WSIs分類において既存の主流手法よりも優れていることが示された。
私たちのオープンソース実装コードはhttps://github.com/FangHeng/SAM-MIL.comで公開されています。
関連論文リスト
- Combining Graph Neural Network and Mamba to Capture Local and Global Tissue Spatial Relationships in Whole Slide Images [1.1813933389519358]
計算病理学では、ギガピクセル全体のスライド画像(WSI)から空間的特徴を抽出することが基本的な課題である。
本稿では,メッセージパッシンググラフニューラルネットワーク(GNN)と状態空間モデル(Mamba)を組み合わせて,局所的およびグローバルな空間関係を捉えるモデルを提案する。
早期肺腺癌患者の無再発生存予測に有効であった。
論文 参考訳(メタデータ) (2024-06-05T22:06:57Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM)は、オープンワールドシナリオにおいて、プロンプトのガイダンスによって、その印象的な一般化機能を実証した。
オープンコンテキストにSAMをアライメントするための自動プロンプトのための新しいフレームワークAlignSAMを提案する。
論文 参考訳(メタデータ) (2024-06-01T16:21:39Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAMはオープン・ボキャブラリ・パノプティ・セグメンテーション・モデルであり、Segment Anything Model(SAM)の強みを、エンドツーエンドのフレームワークで視覚ネイティブのCLIPモデルと統合する。
本稿では,マスクの質を適応的に向上し,各画像の推論中にオープン語彙分類の性能を高めるマスク対応選択組立アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-14T17:55:03Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS)は、コンピュータビジョンと自然言語処理を組み合わせた新しい課題である。
従来の参照画像(RIS)アプローチは、空中画像に見られる複雑な空間スケールと向きによって妨げられている。
本稿ではRMSIN(Rotated Multi-Scale Interaction Network)を紹介する。
論文 参考訳(メタデータ) (2023-12-19T08:14:14Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.42565443181017]
Segment Anything Model (SAM)は、新しいパラダイムビジョン基盤モデルとして登場した。
SAMは様々な領域で応用や適応を発見できるが、その主な制限はオブジェクトの意味を把握できないことである。
我々は,SAMとオープン語彙オブジェクト検出器をエンドツーエンドフレームワークでシームレスに統合するSamborを提案する。
論文 参考訳(メタデータ) (2023-12-06T17:19:00Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
本稿では,任意の粒度でセグメンテーションと認識を可能にする汎用画像セグメンテーションモデルであるSemantic-SAMを紹介する。
複数のデータセットを3つの粒度に集約し、オブジェクトとパーツの分離した分類を導入する。
マルチグラニュラリティ機能を実現するために,各クリックで複数のレベルのマスクを生成できるマルチ選択学習方式を提案する。
論文 参考訳(メタデータ) (2023-07-10T17:59:40Z) - Weakly-Supervised Concealed Object Segmentation with SAM-based Pseudo
Labeling and Multi-scale Feature Grouping [40.07070188661184]
Wakly-Supervised Concealed Object (WSCOS) は、周囲の環境とうまく融合したオブジェクトを分割することを目的としている。
内在的な類似性のため、背景から隠された物体を区別することは困難である。
これら2つの課題に対処する新しいWSCOS手法を提案する。
論文 参考訳(メタデータ) (2023-05-18T14:31:34Z) - DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide
Image Classification [9.950131528559211]
本稿では,WSI分類と正のパッチローカライゼーションのための機能分布ガイド付きディープMILフレームワークを提案する。
CAMELYON16 データセットと TCGA Lung Cancer データセットを用いた実験により,本手法はグローバルな分類と正のパッチローカライゼーションの両タスクにおいて,新たな SOTA を実現することが示された。
論文 参考訳(メタデータ) (2022-06-17T16:04:30Z) - Semantic Attention and Scale Complementary Network for Instance
Segmentation in Remote Sensing Images [54.08240004593062]
本稿では,セマンティックアテンション(SEA)モジュールとスケール補完マスクブランチ(SCMB)で構成される,エンドツーエンドのマルチカテゴリインスタンスセグメンテーションモデルを提案する。
SEAモジュールは、機能マップ上の興味あるインスタンスのアクティベーションを強化するために、追加の監督を備えた、単純な完全な畳み込みセマンティックセマンティックセマンティクスブランチを含んでいる。
SCMBは、元のシングルマスクブランチをトリデントマスクブランチに拡張し、異なるスケールで補完マスクの監視を導入する。
論文 参考訳(メタデータ) (2021-07-25T08:53:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。