Your Graph Recommender is Provably a Single-view Graph Contrastive Learning
- URL: http://arxiv.org/abs/2407.17723v1
- Date: Thu, 25 Jul 2024 02:53:11 GMT
- Title: Your Graph Recommender is Provably a Single-view Graph Contrastive Learning
- Authors: Wenjie Yang, Shengzhong Zhang, Jiaxing Guo, Zengfeng Huang,
- Abstract summary: Graph recommender (GR) is a type of graph neural network (GNNs) encoder that is customized for extracting information from the user-item interaction graph.
Graph contrastive learning (GCL) is a popular research direction that aims to learn, often unsupervised, GNNs with certain contrastive objectives.
Despite the intersection of GR and GCL research, theoretical understanding of the relationship between the two fields is surprisingly sparse.
- Score: 20.97898501484718
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph recommender (GR) is a type of graph neural network (GNNs) encoder that is customized for extracting information from the user-item interaction graph. Due to its strong performance on the recommendation task, GR has gained significant attention recently. Graph contrastive learning (GCL) is also a popular research direction that aims to learn, often unsupervised, GNNs with certain contrastive objectives. As a general graph representation learning method, GCLs have been widely adopted with the supervised recommendation loss for joint training of GRs. Despite the intersection of GR and GCL research, theoretical understanding of the relationship between the two fields is surprisingly sparse. This vacancy inevitably leads to inefficient scientific research. In this paper, we aim to bridge the gap between the field of GR and GCL from the perspective of encoders and loss functions. With mild assumptions, we theoretically show an astonishing fact that graph recommender is equivalent to a commonly-used single-view graph contrastive model. Specifically, we find that (1) the classic encoder in GR is essentially a linear graph convolutional network with one-hot inputs, and (2) the loss function in GR is well bounded by a single-view GCL loss with certain hyperparameters. The first observation enables us to explain crucial designs of GR models, e.g., the removal of self-loop and nonlinearity. And the second finding can easily prompt many cross-field research directions. We empirically show a remarkable result that the recommendation loss and the GCL loss can be used interchangeably. The fact that we can train GR models solely with the GCL loss is particularly insightful, since before this work, GCLs were typically viewed as unsupervised methods that need fine-tuning. We also discuss some potential future works inspired by our theory.
Related papers
- GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning [20.54767504966887]
Graph contrastive learning (GCL) has become a hot topic in the field of graph representation learning.
We propose GNN-Transformer Cooperative Architecture for Trustworthy Graph Contrastive Learning.
arXiv Detail & Related papers (2024-12-18T09:20:12Z) - Graph Classification via Reference Distribution Learning: Theory and Practice [24.74871206083017]
This work introduces Graph Reference Distribution Learning (GRDL), an efficient and accurate graph classification method.
GRDL treats each graph's latent node embeddings given by GNN layers as a discrete distribution, enabling direct classification without global pooling.
Experiments on moderate-scale and large-scale graph datasets show the superiority of GRDL over the state-of-the-art.
arXiv Detail & Related papers (2024-08-21T06:42:22Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Revisiting Graph Contrastive Learning from the Perspective of Graph
Spectrum [91.06367395889514]
Graph Contrastive Learning (GCL) learning the node representations by augmenting graphs has attracted considerable attentions.
We answer these questions by establishing the connection between GCL and graph spectrum.
We propose a spectral graph contrastive learning module (SpCo), which is a general and GCL-friendly plug-in.
arXiv Detail & Related papers (2022-10-05T15:32:00Z) - Graph Soft-Contrastive Learning via Neighborhood Ranking [19.241089079154044]
Graph Contrastive Learning (GCL) has emerged as a promising approach in the realm of graph self-supervised learning.
We propose a novel paradigm, Graph Soft-Contrastive Learning (GSCL)
GSCL facilitates GCL via neighborhood ranking, avoiding the need to specify absolutely similar pairs.
arXiv Detail & Related papers (2022-09-28T09:52:15Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Let Invariant Rationale Discovery Inspire Graph Contrastive Learning [98.10268114789775]
We argue that a high-performing augmentation should preserve the salient semantics of anchor graphs regarding instance-discrimination.
We propose a new framework, Rationale-aware Graph Contrastive Learning (RGCL)
RGCL uses a rationale generator to reveal salient features about graph instance-discrimination as the rationale, and then creates rationale-aware views for contrastive learning.
arXiv Detail & Related papers (2022-06-16T01:28:40Z) - Adversarial Graph Augmentation to Improve Graph Contrastive Learning [21.54343383921459]
We propose a novel principle, termed adversarial-GCL (AD-GCL), which enables GNNs to avoid capturing redundant information during the training.
We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to $14%$ in unsupervised, $6%$ in transfer, and $3%$ in semi-supervised learning settings.
arXiv Detail & Related papers (2021-06-10T15:34:26Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - Self-supervised Graph Learning for Recommendation [69.98671289138694]
We explore self-supervised learning on user-item graph for recommendation.
An auxiliary self-supervised task reinforces node representation learning via self-discrimination.
Empirical studies on three benchmark datasets demonstrate the effectiveness of SGL.
arXiv Detail & Related papers (2020-10-21T06:35:26Z) - Graph Random Neural Network for Semi-Supervised Learning on Graphs [36.218650686748546]
We study the problem of semi-supervised learning on graphs, for which graph neural networks (GNNs) have been extensively explored.
Most existing GNNs inherently suffer from the limitations of over-smoothing, non-robustness, and weak-generalization when labeled nodes are scarce.
In this paper, we propose a simple yet effective framework -- GRAPH R NEURAL NETWORKS (GRAND) -- to address these issues.
arXiv Detail & Related papers (2020-05-22T09:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.