Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2505.16237v1
- Date: Thu, 22 May 2025 05:15:27 GMT
- Title: Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation
- Authors: Derong Xu, Pengyue Jia, Xiaopeng Li, Yingyi Zhang, Maolin Wang, Qidong Liu, Xiangyu Zhao, Yichao Wang, Huifeng Guo, Ruiming Tang, Enhong Chen, Tong Xu,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
- Score: 75.9865035064794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information. Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system. Building on this foundation, graph-based RAG systems go a step further by retrieving subgraphs, which preserve the relationships between knowledge entities and provide more comprehensive context. However, graph RAG faces two challenges: (1) Retrieving relevant information introduces irrelevant nodes (especially in dense graph databases, where retrieval usually extends to adjacent nodes), and leads to overly lengthy inputs that hinder efficiency; (2) The representation gap between graph and language during generation with LLMs limits the ability to fully leverage graph structures for enhanced understanding. To address these limitations, we propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase. It first formulates a subgraph by retrieving nodes and edges. Then an Aligner is proposed to jointly optimizes a graph encoder with LLM-summarized reasoning. It achieves dual alignment of graph node and representation by leveraging KL divergence loss and contrastive loss, facilitating efficient pruning of irrelevant knowledge and establishing a unified semantic space. The Generator integrates the aligned graph data with LLM to produce coherent and accurate answers. Experiments on GraphQA benchmark across three tasks (including common sense reasoning, scene graph understanding, and knowledge graph reasoning) validate the effectiveness of our method. The code will be available upon accepted.
Related papers
- GraphRunner: A Multi-Stage Framework for Efficient and Accurate Graph-Based Retrieval [3.792463570467098]
GraphRunner is a novel graph-based retrieval framework that operates in three distinct stages: planning, verification, and execution.<n>It significantly reduces reasoning errors and detects hallucinations before execution.<n>Our evaluation using the GRBench dataset shows that GraphRunner consistently outperforms existing approaches.
arXiv Detail & Related papers (2025-07-11T18:10:01Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - LLM as GNN: Graph Vocabulary Learning for Text-Attributed Graph Foundation Models [54.82915844507371]
Text-Attributed Graphs (TAGs) are ubiquitous in real-world scenarios.<n>Despite large efforts to integrate Large Language Models (LLMs) and Graph Neural Networks (GNNs) for TAGs, existing approaches suffer from decoupled architectures.<n>We propose PromptGFM, a versatile GFM for TAGs grounded in graph vocabulary learning.
arXiv Detail & Related papers (2025-03-05T09:45:22Z) - Causal Graphs Meet Thoughts: Enhancing Complex Reasoning in Graph-Augmented LLMs [4.701165676405066]
It is critical not only to retrieve relevant information but also to provide causal reasoning and explainability.<n>This paper proposes a novel pipeline that filters large knowledge graphs to emphasize cause-effect edges.<n> Experiments on medical question-answering tasks show consistent gains, with up to a 10% absolute improvement.
arXiv Detail & Related papers (2025-01-24T19:31:06Z) - What Do LLMs Need to Understand Graphs: A Survey of Parametric Representation of Graphs [69.48708136448694]
Large language models (LLMs) are reorganizing in the AI community for their expected reasoning and inference abilities.<n>We believe this kind of parametric representation of graphs, graph laws, can be a solution for making LLMs understand graph data as the input.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge.
Knowledge Graph Question Answering (KGQA) serves as a critical touchstone for the integration.
We propose an interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG)
arXiv Detail & Related papers (2024-09-05T01:11:58Z) - GRAG: Graph Retrieval-Augmented Generation [14.98084919101233]
Graph Retrieval-Augmented Generation (GRAG) tackles the fundamental challenges in retrieving textual subgraphs.<n>We propose a novel divide-and-conquer strategy that retrieves the optimal subgraph structure in linear time.<n>Our experiments on graph reasoning benchmarks demonstrate that our GRAG approach significantly outperforms current state-of-the-art RAG methods.
arXiv Detail & Related papers (2024-05-26T10:11:40Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
Large language models (LLMs) suffer from hallucinations, especially on knowledge-intensive tasks.
Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora.
We propose a framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively.
arXiv Detail & Related papers (2024-04-10T15:41:53Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.