論文の概要: Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation
- arxiv url: http://arxiv.org/abs/2407.17755v1
- Date: Thu, 25 Jul 2024 04:09:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 15:17:52.233720
- Title: Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation
- Title(参考訳): 深層学習と合成データ拡張による眼疾患診断の強化
- Authors: Saideep Kilaru, Kothamasu Jayachandra, Tanishka Yagneshwar, Suchi Kumari,
- Abstract要約: 本稿では,糖尿病網膜症の早期発見と管理を目的としたアンサンブル学習手法を提案する。
提案したモデルはAPTOSデータセット上でテストされ、以前のモデルと比較して検証精度(99%)の優位性を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the focus is on improving the diagnosis of diabetic retinopathy (DR) using machine learning and deep learning technologies. Researchers have explored various approaches, including the use of high-definition medical imaging, AI-driven algorithms such as convolutional neural networks (CNNs) and generative adversarial networks (GANs). Among all the available tools, CNNs have emerged as a preferred tool due to their superior classification accuracy and efficiency. Although the accuracy of CNNs is comparatively better but it can be improved by introducing some hybrid models by combining various machine learning and deep learning models. Therefore, in this paper, an ensemble learning technique is proposed for early detection and management of DR with higher accuracy. The proposed model is tested on the APTOS dataset and it is showing supremacy on the validation accuracy ($99\%)$ in comparison to the previous models. Hence, the model can be helpful for early detection and treatment of the DR, thereby enhancing the overall quality of care for affected individuals.
- Abstract(参考訳): 近年、機械学習とディープラーニング技術を用いて糖尿病網膜症(DR)の診断を改善することに注力している。
研究者は、高解像度の医療イメージング、畳み込みニューラルネットワーク(CNN)のようなAI駆動アルゴリズム、GAN(Generative Adversarial Network)など、さまざまなアプローチを探求してきた。
利用可能なツールの中で、CNNはより優れた分類精度と効率のために好まれるツールとして登場した。
CNNの精度は比較的優れているが、様々な機械学習モデルとディープラーニングモデルを組み合わせることで、いくつかのハイブリッドモデルを導入することで改善できる。
そこで本研究では,DRの早期検出と管理を高精度に行うためのアンサンブル学習手法を提案する。
提案したモデルはAPTOSデータセット上でテストされ、以前のモデルと比較して検証精度(99\%)の優位性を示している。
したがって、このモデルはDRの早期発見と治療に役立ち、患児に対するケアの全体的な品質を高めることができる。
関連論文リスト
- A study on deep feature extraction to detect and classify Acute Lymphoblastic Leukemia (ALL) [0.0]
急性リンパ芽球性白血病(ALL)は、主に成人と小児に影響を及ぼす血液悪性腫瘍である。
本研究では、深い学習、特に畳み込みニューラルネットワーク(CNN)を用いて、ALLの検出と分類を行う。
87%の精度で、ResNet101モデルは最高の結果をもたらし、その後にDenseNet121とVGG19が続いた。
論文 参考訳(メタデータ) (2024-09-10T17:53:29Z) - Breast Cancer Image Classification Method Based on Deep Transfer Learning [40.392772795903795]
深層学習と転写学習を組み合わせた乳癌画像分類モデルを提案する。
実験結果から, アルゴリズムは, 従来のモデルに比べて分類精度が有意に向上し, テストセットの84.0%以上の効率を達成することが示された。
論文 参考訳(メタデータ) (2024-04-14T12:09:47Z) - Explainable Contrastive and Cost-Sensitive Learning for Cervical Cancer
Classification [0.0]
最初に、トレーニング済みの5つのCNNを微調整し、誤分類の全体的なコストを最小化する。
教師付きコントラスト学習は、モデルが重要な特徴やパターンを捉えやすくするために含まれます。
実験の結果, 精度97.29%を達成し, 開発システムの有効性を実証した。
論文 参考訳(メタデータ) (2024-02-24T21:03:30Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
本研究は糖尿病網膜症(DR)の臨床的課題について考察する。
提案手法は、畳み込みニューラルネットワーク(CNN)を用いたトランスファーラーニングを利用して、単一の基礎写真を用いた自動DR検出を行う。
Jaccard、F1、リコール、精度、精度の高評価スコアは、網膜病理評価における診断能力を高めるモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-01-05T11:19:24Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Learning Through Guidance: Knowledge Distillation for Endoscopic Image
Classification [40.366659911178964]
内視鏡は消化管(GI)の根底にある異常を同定する上で重要な役割を担っている。
ディープラーニング、特にCNN(Convolution Neural Networks)は、従来の機能エンジニアリングを使わずに自動機能学習を実行するように設計されている。
KDに基づく3つの学習フレームワーク、応答ベース、特徴ベース、関係ベースメカニズムについて検討し、関係ベース学習を支援するために、新しい多面的注意型特徴融合機構を導入する。
論文 参考訳(メタデータ) (2023-08-17T02:02:11Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Exploration of Various Deep Learning Models for Increased Accuracy in
Automatic Polyp Detection [62.997667081978825]
本稿では,大腸内視鏡画像におけるポリプの検出精度が高いディープラーニングモデルとアルゴリズムについて検討する。
畳み込みニューラルネットワーク(CNN)を用いたディープラーニングの研究
論文 参考訳(メタデータ) (2022-03-04T04:03:41Z) - Improving the Level of Autism Discrimination through GraphRNN Link
Prediction [8.103074928419527]
本稿では,GraphRNNを用いて実脳ネットワークのエッジ分布を学習する後者の手法に基づく。
実験の結果,オリジナルデータと合成データの組み合わせはニューラルネットワークの識別を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2022-02-19T06:50:32Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization [0.0]
畳み込みニューラルネットワーク(CNN)は、画像データのパターンを検出する強力なツールとなっている。
これまでMRIデータのCNNモデルから得られた精度にもかかわらず、この精度を駆動する特徴や画像領域に関する情報を提供する論文はほとんどなかった。
論文 参考訳(メタデータ) (2020-08-18T15:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。