Online Learning for Autonomous Management of Intent-based 6G Networks
- URL: http://arxiv.org/abs/2407.17767v1
- Date: Thu, 25 Jul 2024 04:48:56 GMT
- Title: Online Learning for Autonomous Management of Intent-based 6G Networks
- Authors: Erciyes Karakaya, Ozgur Ercetin, Huseyin Ozkan, Mehmet Karaca, Elham Dehghan Biyar, Alexandros Palaios,
- Abstract summary: We propose an online learning method based on the hierarchical multi-armed bandits approach for an effective management of intent-based networking.
We show that our algorithm is an effective approach regarding resource allocation and satisfaction of intent expectations.
- Score: 39.135195293229444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing complexity of networks and the variety of future scenarios with diverse and often stringent performance requirements call for a higher level of automation. Intent-based management emerges as a solution to attain high level of automation, enabling human operators to solely communicate with the network through high-level intents. The intents consist of the targets in the form of expectations (i.e., latency expectation) from a service and based on the expectations the required network configurations should be done accordingly. It is almost inevitable that when a network action is taken to fulfill one intent, it can cause negative impacts on the performance of another intent, which results in a conflict. In this paper, we aim to address the conflict issue and autonomous management of intent-based networking, and propose an online learning method based on the hierarchical multi-armed bandits approach for an effective management. Thanks to this hierarchical structure, it performs an efficient exploration and exploitation of network configurations with respect to the dynamic network conditions. We show that our algorithm is an effective approach regarding resource allocation and satisfaction of intent expectations.
Related papers
- Adaptive Network Intervention for Complex Systems: A Hierarchical Graph Reinforcement Learning Approach [0.8287206589886879]
This paper introduces a Hierarchical Graph Reinforcement Learning framework that governs such systems through targeted interventions in the network structure.
Under low social learning, the HGRL manager preserves cooperation, forming robust core-periphery networks dominated by cooperators.
In contrast, high social learning defection accelerates, leading to sparser, chain-like networks.
arXiv Detail & Related papers (2024-10-30T18:59:02Z) - Towards Intent-Based Network Management: Large Language Models for Intent Extraction in 5G Core Networks [10.981422497762837]
The integration of Machine Learning and Artificial Intelligence into fifth-generation (5G) networks has made evident the limitations of network intelligence.
This paper presents the development of a custom Large Language Model (LLM) for 5G and next-generation intent-based networking.
arXiv Detail & Related papers (2024-03-04T17:29:57Z) - Intent Assurance using LLMs guided by Intent Drift [5.438862991585019]
Intent-Based Networking (IBN) promises to align intents and business objectives with network operations--in an automated manner.
In this paper, we define an assurance framework that allows us to detect and act when intent drift occurs.
We leverage AI-driven policies, generated by Large Language Models (LLMs), which can quickly learn the necessary in-context requirements.
arXiv Detail & Related papers (2024-02-01T16:09:19Z) - Towards Intelligent Network Management: Leveraging AI for Network
Service Detection [0.0]
This study focuses on leveraging Machine Learning methodologies to create an advanced network traffic classification system.
We introduce a novel data-driven approach that excels in identifying various network service types in real-time.
Our system demonstrates a remarkable accuracy in distinguishing the network services.
arXiv Detail & Related papers (2023-10-14T16:06:11Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Competing Adaptive Networks [56.56653763124104]
We develop an algorithm for decentralized competition among teams of adaptive agents.
We present an application in the decentralized training of generative adversarial neural networks.
arXiv Detail & Related papers (2021-03-29T14:42:15Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
We propose a principled approach, rooted in differentiable neural architecture search, to automatically define branching structures in a multi-task neural network.
We show that our approach consistently finds high-performing branching structures within limited resource budgets.
arXiv Detail & Related papers (2020-08-24T09:49:19Z) - Learning to Branch for Multi-Task Learning [12.49373126819798]
We present an automated multi-task learning algorithm that learns where to share or branch within a network.
We propose a novel tree-structured design space that casts a tree branching operation as a gumbel-softmax sampling procedure.
arXiv Detail & Related papers (2020-06-02T19:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.