A Unified Understanding of Adversarial Vulnerability Regarding Unimodal Models and Vision-Language Pre-training Models
- URL: http://arxiv.org/abs/2407.17797v1
- Date: Thu, 25 Jul 2024 06:10:33 GMT
- Title: A Unified Understanding of Adversarial Vulnerability Regarding Unimodal Models and Vision-Language Pre-training Models
- Authors: Haonan Zheng, Xinyang Deng, Wen Jiang, Wenrui Li,
- Abstract summary: Feature Guidance Attack (FGA) is a novel method that uses text representations to direct the perturbation of clean images.
Our method demonstrates stable and effective attack capabilities across various datasets, downstream tasks, and both black-box and white-box settings.
- Score: 7.350203999073509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With Vision-Language Pre-training (VLP) models demonstrating powerful multimodal interaction capabilities, the application scenarios of neural networks are no longer confined to unimodal domains but have expanded to more complex multimodal V+L downstream tasks. The security vulnerabilities of unimodal models have been extensively examined, whereas those of VLP models remain challenging. We note that in CV models, the understanding of images comes from annotated information, while VLP models are designed to learn image representations directly from raw text. Motivated by this discrepancy, we developed the Feature Guidance Attack (FGA), a novel method that uses text representations to direct the perturbation of clean images, resulting in the generation of adversarial images. FGA is orthogonal to many advanced attack strategies in the unimodal domain, facilitating the direct application of rich research findings from the unimodal to the multimodal scenario. By appropriately introducing text attack into FGA, we construct Feature Guidance with Text Attack (FGA-T). Through the interaction of attacking two modalities, FGA-T achieves superior attack effects against VLP models. Moreover, incorporating data augmentation and momentum mechanisms significantly improves the black-box transferability of FGA-T. Our method demonstrates stable and effective attack capabilities across various datasets, downstream tasks, and both black-box and white-box settings, offering a unified baseline for exploring the robustness of VLP models.
Related papers
- Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining [48.98105914356609]
Lumina-mGPT is a family of multimodal autoregressive models capable of various vision and language tasks.
We introduce Ominiponent Supervised Finetuning, transforming Lumina-mGPT into a foundation model that seamlessly achieves omnipotent task unification.
arXiv Detail & Related papers (2024-08-05T17:46:53Z) - Improving Adversarial Transferability of Vision-Language Pre-training Models through Collaborative Multimodal Interaction [22.393624206051925]
Existing work rarely studies the transferability of attacks on Vision-Language Pre-training models.
We propose a novel attack, called Collaborative Multimodal Interaction Attack (CMI-Attack)
CMI-Attack raises the transfer success rates from ALBEF to TCL, $textCLIP_textViT$ and $textCLIP_textCNN$ by 8.11%-16.75% over state-of-the-art methods.
arXiv Detail & Related papers (2024-03-16T10:32:24Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - Adversarial Prompt Tuning for Vision-Language Models [86.5543597406173]
Adversarial Prompt Tuning (AdvPT) is a technique to enhance the adversarial robustness of image encoders in Vision-Language Models (VLMs)
We demonstrate that AdvPT improves resistance against white-box and black-box adversarial attacks and exhibits a synergistic effect when combined with existing image-processing-based defense techniques.
arXiv Detail & Related papers (2023-11-19T07:47:43Z) - Set-level Guidance Attack: Boosting Adversarial Transferability of
Vision-Language Pre-training Models [52.530286579915284]
We present the first study to investigate the adversarial transferability of vision-language pre-training models.
The transferability degradation is partly caused by the under-utilization of cross-modal interactions.
We propose a highly transferable Set-level Guidance Attack (SGA) that thoroughly leverages modality interactions and incorporates alignment-preserving augmentation with cross-modal guidance.
arXiv Detail & Related papers (2023-07-26T09:19:21Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Towards Adversarial Attack on Vision-Language Pre-training Models [15.882687207499373]
This paper studied the adversarial attack on popular vision-language (V+L) models and V+L tasks.
By examining the influence of different objects and attack targets, we concluded some key observations as guidance on designing strong multimodal adversarial attack.
arXiv Detail & Related papers (2022-06-19T12:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.