Multi-Head Attention Driven Dynamic Visual-Semantic Embedding for Enhanced Image-Text Matching
- URL: http://arxiv.org/abs/2412.19184v1
- Date: Thu, 26 Dec 2024 11:46:22 GMT
- Title: Multi-Head Attention Driven Dynamic Visual-Semantic Embedding for Enhanced Image-Text Matching
- Authors: Wenjing Chen,
- Abstract summary: This study proposes an innovative visual semantic embedding model, Multi-Headed Consensus-Aware Visual-Semantic Embedding (MH-CVSE)
This model introduces a multi-head self-attention mechanism based on the consensus-aware visual semantic embedding model (CVSE) to capture information in multiple subspaces in parallel.
In terms of loss function design, the MH-CVSE model adopts a dynamic weight adjustment strategy to dynamically adjust the weight according to the loss value itself.
- Score: 0.8611782340880084
- License:
- Abstract: With the rapid development of multimodal learning, the image-text matching task, as a bridge connecting vision and language, has become increasingly important. Based on existing research, this study proposes an innovative visual semantic embedding model, Multi-Headed Consensus-Aware Visual-Semantic Embedding (MH-CVSE). This model introduces a multi-head self-attention mechanism based on the consensus-aware visual semantic embedding model (CVSE) to capture information in multiple subspaces in parallel, significantly enhancing the model's ability to understand and represent the complex relationship between images and texts. In addition, we adopt a parameterized feature fusion strategy to flexibly integrate feature information at different levels, further improving the model's expressive power. In terms of loss function design, the MH-CVSE model adopts a dynamic weight adjustment strategy to dynamically adjust the weight according to the loss value itself, so that the model can better balance the contribution of different loss terms during training. At the same time, we introduce a cosine annealing learning rate strategy to help the model converge more stably in the later stages of training. Extensive experimental verification on the Flickr30k dataset shows that the MH-CVSE model achieves better performance than previous methods in both bidirectional image and text retrieval tasks, fully demonstrating its effectiveness and superiority.
Related papers
- Weak Supervision Dynamic KL-Weighted Diffusion Models Guided by Large Language Models [0.0]
We present a novel method for improving text-to-image generation by combining Large Language Models with diffusion models.
Our approach incorporates semantic understanding from pre-trained LLMs to guide the generation process.
Our method significantly improves both the visual quality and alignment of generated images with text descriptions.
arXiv Detail & Related papers (2025-02-02T15:43:13Z) - Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models [50.98559225639266]
Sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability.
Global Semantic-guided Weight Allocator (GSWA) module allocates weights to sub-images based on their relative information density.
SleighVL, a lightweight yet high-performing model, outperforms models with comparable parameters and remains competitive with larger models.
arXiv Detail & Related papers (2025-01-24T06:42:06Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
We introduce a Multimodal Alignment and Reconstruction Network (MARNet) to enhance the model's resistance to visual noise.
MARNet includes a cross-modal diffusion reconstruction module for smoothly and stably blending information across different domains.
Experiments conducted on two benchmark datasets, Vireo-Food172 and Ingredient-101, demonstrate that MARNet effectively improves the quality of image information extracted by the model.
arXiv Detail & Related papers (2024-07-26T16:30:18Z) - A Unified Understanding of Adversarial Vulnerability Regarding Unimodal Models and Vision-Language Pre-training Models [7.350203999073509]
Feature Guidance Attack (FGA) is a novel method that uses text representations to direct the perturbation of clean images.
Our method demonstrates stable and effective attack capabilities across various datasets, downstream tasks, and both black-box and white-box settings.
arXiv Detail & Related papers (2024-07-25T06:10:33Z) - Advanced Multimodal Deep Learning Architecture for Image-Text Matching [33.8315200009152]
Image-text matching is a key multimodal task that aims to model the semantic association between images and text as a matching relationship.
We introduce an advanced multimodal deep learning architecture, which combines the high-level abstract representation ability of deep neural networks for visual information with the advantages of natural language processing models for text semantic understanding.
Experiments show that compared with existing image-text matching models, the optimized new model has significantly improved performance on a series of benchmark data sets.
arXiv Detail & Related papers (2024-06-13T08:32:24Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - GPT4Image: Can Large Pre-trained Models Help Vision Models on Perception
Tasks? [51.22096780511165]
We present a new learning paradigm in which the knowledge extracted from large pre-trained models are utilized to help models like CNN and ViT learn enhanced representations.
We feed detailed descriptions into a pre-trained encoder to extract text embeddings with rich semantic information that encodes the content of images.
arXiv Detail & Related papers (2023-06-01T14:02:45Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.