論文の概要: Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality
- arxiv url: http://arxiv.org/abs/2407.17822v2
- Date: Fri, 25 Oct 2024 15:27:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:01:09.659601
- Title: Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality
- Title(参考訳): フロー制御のための高度な深層強化学習法:群不変および位置符号化ネットワークによる学習速度と品質の向上
- Authors: Joongoo Jeon, Jean Rabault, Joel Vasanth, Francisco Alcántara-Ávila, Shilaj Baral, Ricardo Vinuesa,
- Abstract要約: 本研究は,流路制御のための深部強化学習法(DRL)の進歩である。
グループ不変ネットワークと位置エンコーディングをDRLアーキテクチャに統合することに注力する。
提案手法はRayleigh-B'enard対流のケーススタディを用いて検証した。
- 参考スコア(独自算出の注目度): 0.7421845364041001
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flow control is key to maximize energy efficiency in a wide range of applications. However, traditional flow-control methods face significant challenges in addressing non-linear systems and high-dimensional data, limiting their application in realistic energy systems. This study advances deep-reinforcement-learning (DRL) methods for flow control, particularly focusing on integrating group-invariant networks and positional encoding into DRL architectures. Our methods leverage multi-agent reinforcement learning (MARL) to exploit policy invariance in space, in combination with group-invariant networks to ensure local symmetry invariance. Additionally, a positional encoding inspired by the transformer architecture is incorporated to provide location information to the agents, mitigating action constraints from strict invariance. The proposed methods are verified using a case study of Rayleigh-B\'enard convection, where the goal is to minimize the Nusselt number Nu. The group-invariant neural networks (GI-NNs) show faster convergence compared to the base MARL, achieving better average policy performance. The GI-NNs not only cut DRL training time in half but also notably enhance learning reproducibility. Positional encoding further enhances these results, effectively reducing the minimum Nu and stabilizing convergence. Interestingly, group invariant networks specialize in improving learning speed and positional encoding specializes in improving learning quality. These results demonstrate that choosing a suitable feature-representation method according to the purpose as well as the characteristics of each control problem is essential. We believe that the results of this study will not only inspire novel DRL methods with invariant and unique representations, but also provide useful insights for industrial applications.
- Abstract(参考訳): フロー制御は、幅広い応用においてエネルギー効率を最大化する鍵となる。
しかし、従来のフロー制御手法は、非線形システムと高次元データに対処する上で大きな課題に直面し、現実的なエネルギーシステムへの応用を制限している。
本研究では,フロー制御のための深層強化学習法,特にグループ不変ネットワークと位置エンコーディングをDRLアーキテクチャに統合することに焦点を当てた。
提案手法は,マルチエージェント強化学習(MARL)を用いて,局所対称性の不変性を確保するために,群不変ネットワークと組み合わせて空間のポリシー不変性を利用する。
さらに、トランスアーキテクチャにインスパイアされた位置エンコーディングが組み込まれ、エージェントに位置情報を提供し、厳密な不変性からアクション制約を緩和する。
提案手法はレイリー・ブエナード対流のケーススタディを用いて検証され、ヌッセルト数 Nu の最小化が目的である。
グループ不変ニューラルネットワーク(GI-NN)は、ベースMARLよりも高速な収束を示し、平均ポリシー性能が向上する。
GI-NNはDRLトレーニング時間を半分に削減しただけでなく、学習再現性も向上した。
位置エンコーディングはこれらの結果をさらに強化し、最小のNuを効果的に減少させ、収束を安定化させる。
興味深いことに、学習速度の向上を専門とするグループ不変ネットワークと、学習品質の向上を専門とする位置符号化がある。
これらの結果から,各制御問題の特徴と目的に応じて適切な特徴表現法を選択することが不可欠であることが示唆された。
本研究の結果は, 不変かつ一意な表現を持つ新しいDRL法に刺激を与えるだけでなく, 産業応用に有用な洞察を与えるものと考えられる。
関連論文リスト
- Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
ビームフォーミング,スペクトルアロケーション,リモートユーザ機器(RUE)アソシエイトを最適化するために,GAILを利用した新しいポリシー学習手法を提案する。
手動チューニングなしで報酬関数を自動的に学習するために、逆RL(IRL)を用いる。
提案手法は従来のRL手法よりも優れており,コンバージェンスと報酬値の14.6%の改善が達成されている。
論文 参考訳(メタデータ) (2024-09-27T13:05:02Z) - SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning [5.59265003686955]
SINDy-RLは,SINDyと深層強化学習を組み合わせたフレームワークである。
SINDy-RLは最先端のDRLアルゴリズムに匹敵する性能を達成する。
我々は,ベンチマーク制御環境と流体問題に対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-14T05:17:39Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - A Distributed Deep Reinforcement Learning Technique for Application
Placement in Edge and Fog Computing Environments [31.326505188936746]
フォグ/エッジコンピューティング環境において, DRL(Deep Reinforcement Learning)に基づく配置技術が提案されている。
IMPortance weighted Actor-Learner Architectures (IMPALA) に基づくアクタ批判に基づく分散アプリケーション配置手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T11:25:03Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
従来の手法を補完する新しい意味データ拡張アルゴリズムを提案する。
提案手法はディープネットワークが線形化特徴の学習に有効であるという興味深い性質に着想を得たものである。
提案した暗黙的セマンティックデータ拡張(ISDA)アルゴリズムは,新たなロバストCE損失を最小限に抑える。
論文 参考訳(メタデータ) (2020-07-21T00:32:44Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。