Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network
- URL: http://arxiv.org/abs/2407.17857v1
- Date: Thu, 25 Jul 2024 08:22:30 GMT
- Title: Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network
- Authors: Sukwon Yun, Jie Peng, Alexandro E. Trevino, Chanyoung Park, Tianlong Chen,
- Abstract summary: We introduce Mew, a novel framework designed to efficiently process mIF images through the lens of multiplex network.
Mew innovatively constructs a multiplex network comprising two distinct layers: a Voronoi network for geometric information and a Cell-type network for capturing cell-wise homogeneity.
This framework equips a scalable and efficient Graph Neural Network (GNN), capable of processing the entire graph during training.
- Score: 84.88767228835928
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in graph-based approaches for multiplexed immunofluorescence (mIF) images have significantly propelled the field forward, offering deeper insights into patient-level phenotyping. However, current graph-based methodologies encounter two primary challenges: (1) Cellular Heterogeneity, where existing approaches fail to adequately address the inductive biases inherent in graphs, particularly the homophily characteristic observed in cellular connectivity and; (2) Scalability, where handling cellular graphs from high-dimensional images faces difficulties in managing a high number of cells. To overcome these limitations, we introduce Mew, a novel framework designed to efficiently process mIF images through the lens of multiplex network. Mew innovatively constructs a multiplex network comprising two distinct layers: a Voronoi network for geometric information and a Cell-type network for capturing cell-wise homogeneity. This framework equips a scalable and efficient Graph Neural Network (GNN), capable of processing the entire graph during training. Furthermore, Mew integrates an interpretable attention module that autonomously identifies relevant layers for image classification. Extensive experiments on a real-world patient dataset from various institutions highlight Mew's remarkable efficacy and efficiency, marking a significant advancement in mIF image analysis. The source code of Mew can be found here: \url{https://github.com/UNITES-Lab/Mew}
Related papers
- DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
We introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks.
We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
arXiv Detail & Related papers (2024-10-04T00:38:29Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Learning a Graph Neural Network with Cross Modality Interaction for
Image Fusion [23.296468921842948]
Infrared and visible image fusion has gradually proved to be a vital fork in the field of multi-modality imaging technologies.
We propose an interactive graph neural network (GNN)-based architecture between cross modality for fusion, called IGNet.
Our IGNet can generate visually appealing fused images while scoring averagely 2.59% mAP@.5 and 7.77% mIoU higher in detection and segmentation.
arXiv Detail & Related papers (2023-08-07T02:25:06Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - How GNNs Facilitate CNNs in Mining Geometric Information from
Large-Scale Medical Images [2.2699159408903484]
We propose a fusion framework for enhancing the global image-level representation captured by convolutional neural networks (CNNs)
We evaluate our fusion strategies on histology datasets curated from large patient cohorts of colorectal and gastric cancers.
arXiv Detail & Related papers (2022-06-15T15:27:48Z) - GraMeR: Graph Meta Reinforcement Learning for Multi-Objective Influence
Maximization [1.7311053765541482]
Influence (IM) is a problem of identifying a subset of nodes called the seed nodes in a network (graph)
IM has numerous applications such as viral marketing, epidemic control, sensor placement and other network-related tasks.
We develop a generic IM problem as a Markov decision process that handles both intrinsic and influence activations.
arXiv Detail & Related papers (2022-05-30T03:48:51Z) - MultiPathGAN: Structure Preserving Stain Normalization using
Unsupervised Multi-domain Adversarial Network with Perception Loss [10.043946236248392]
Histopathology relies on the analysis of microscopic tissue images to diagnose disease.
We introduce an unsupervised adversarial network to translate (and hence normalize) whole slide images across multiple data acquisition domains.
arXiv Detail & Related papers (2022-04-20T20:48:17Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Neural Cellular Automata Manifold [84.08170531451006]
We show that the neural network architecture of the Neural Cellular Automata can be encapsulated in a larger NN.
This allows us to propose a new model that encodes a manifold of NCA, each of them capable of generating a distinct image.
In biological terms, our approach would play the role of the transcription factors, modulating the mapping of genes into specific proteins that drive cellular differentiation.
arXiv Detail & Related papers (2020-06-22T11:41:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.