DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images
- URL: http://arxiv.org/abs/2410.03058v1
- Date: Fri, 4 Oct 2024 00:38:29 GMT
- Title: DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images
- Authors: Chen Liu, Danqi Liao, Alejandro Parada-Mayorga, Alejandro Ribeiro, Marcello DiStasio, Smita Krishnaswamy,
- Abstract summary: We introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks.
We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
- Score: 105.46086313858062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of digital microscopy images, driven by advances in automated whole slide scanning, presents significant opportunities for biomedical research and clinical diagnostics. However, accurately annotating densely packed information in these images remains a major challenge. To address this, we introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks. DiffKillR employs two complementary neural networks: one that learns a diffeomorphism-invariant feature space for robust cell matching and another that computes the precise warping field between cells for annotation mapping. Using a small set of annotated archetypes, DiffKillR efficiently propagates annotations across large microscopy images, reducing the need for extensive manual labeling. More importantly, it is suitable for any type of pixel-level annotation. We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
Related papers
- BlurryScope: a cost-effective and compact scanning microscope for automated HER2 scoring using deep learning on blurry image data [0.0]
"BlurryScope" is a cost-effective and compact solution for automated inspection and analysis of tissue sections.
BlurryScope integrates specialized hardware with a neural network-based model to process motion-red histological images.
arXiv Detail & Related papers (2024-10-23T04:46:36Z) - Mew: Multiplexed Immunofluorescence Image Analysis through an Efficient Multiplex Network [84.88767228835928]
We introduce Mew, a novel framework designed to efficiently process mIF images through the lens of multiplex network.
Mew innovatively constructs a multiplex network comprising two distinct layers: a Voronoi network for geometric information and a Cell-type network for capturing cell-wise homogeneity.
This framework equips a scalable and efficient Graph Neural Network (GNN), capable of processing the entire graph during training.
arXiv Detail & Related papers (2024-07-25T08:22:30Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Semi-supervised Cell Recognition under Point Supervision [7.536526198969589]
Point-based cell recognition (PCR) methods normally require a vast number of annotations.
Semi-supervised point-based cell recognition (SSPCR) remains largely overlooked.
In this paper, we develop a SSPCR framework suitable for the end-to-end PCR models for the first time.
arXiv Detail & Related papers (2023-06-14T04:56:31Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - 3D fluorescence microscopy data synthesis for segmentation and
benchmarking [0.9922927990501083]
Conditional generative adversarial networks can be utilized to generate realistic image data for 3D fluorescence microscopy.
An additional positional conditioning of the cellular structures enables the reconstruction of position-dependent intensity characteristics.
A patch-wise working principle and a subsequent full-size reassemble strategy is used to generate image data of arbitrary size and different organisms.
arXiv Detail & Related papers (2021-07-21T16:08:56Z) - Microscopic fine-grained instance classification through deep attention [7.50282814989294]
Fine-grained classification of microscopic image data with limited samples is an open problem in computer vision and biomedical imaging.
We propose a simple yet effective deep network that performs two tasks simultaneously in an end-to-end manner.
The result is a robust but lightweight end-to-end trainable deep network that yields state-of-the-art results.
arXiv Detail & Related papers (2020-10-06T15:29:58Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
We present a novel method for the unsupervised domain adaptation for histological image analysis.
It is based on a backbone for embedding images into a feature space, and a graph neural layer for propa-gating the supervision signals of images with labels.
In experiments, our methodachieves state-of-the-art performance on four public datasets.
arXiv Detail & Related papers (2020-08-21T04:53:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.