HG-PIPE: Vision Transformer Acceleration with Hybrid-Grained Pipeline
- URL: http://arxiv.org/abs/2407.17879v2
- Date: Thu, 1 Aug 2024 08:18:57 GMT
- Title: HG-PIPE: Vision Transformer Acceleration with Hybrid-Grained Pipeline
- Authors: Qingyu Guo, Jiayong Wan, Songqiang Xu, Meng Li, Yuan Wang,
- Abstract summary: Vision Transformer (ViT) acceleration with field programmable gate array (FPGA) is promising but challenging.
We introduce HG-PIPE, a pipelined FPGA accelerator for high- throughput and low-latency ViT processing.
With a VCK190 FPGA, HG-PIPE realizes end-to-end ViT acceleration on a single device and achieves 7118 images/s, which is 2.81 times faster than a V100 GPU.
- Score: 13.849471252921004
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Vision Transformer (ViT) acceleration with field programmable gate array (FPGA) is promising but challenging. Existing FPGA-based ViT accelerators mainly rely on temporal architectures, which process different operators by reusing the same hardware blocks and suffer from extensive memory access overhead. Pipelined architectures, either coarse-grained or fine-grained, unroll the ViT computation spatially for memory access efficiency. However, they usually suffer from significant hardware resource constraints and pipeline bubbles induced by the global computation dependency of ViT. In this paper, we introduce HG-PIPE, a pipelined FPGA accelerator for high-throughput and low-latency ViT processing. HG-PIPE features a hybrid-grained pipeline architecture to reduce on-chip buffer cost and couples the computation dataflow and parallelism design to eliminate the pipeline bubbles. HG-PIPE further introduces careful approximations to implement both linear and non-linear operators with abundant Lookup Tables (LUTs), thus alleviating resource constraints. On a ZCU102 FPGA, HG-PIPE achieves 2.78 times better throughput and 2.52 times better resource efficiency than the prior-art accelerators, e.g., AutoViTAcc. With a VCK190 FPGA, HG-PIPE realizes end-to-end ViT acceleration on a single device and achieves 7118 images/s, which is 2.81 times faster than a V100 GPU.
Related papers
- Quasar-ViT: Hardware-Oriented Quantization-Aware Architecture Search for Vision Transformers [56.37495946212932]
Vision transformers (ViTs) have demonstrated their superior accuracy for computer vision tasks compared to convolutional neural networks (CNNs)
This work proposes Quasar-ViT, a hardware-oriented quantization-aware architecture search framework for ViTs.
arXiv Detail & Related papers (2024-07-25T16:35:46Z) - SWAT: Scalable and Efficient Window Attention-based Transformers Acceleration on FPGAs [3.302913401404089]
Sliding window-based static sparse attention mitigates the problem by limiting the attention scope of the input tokens.
We propose a dataflow-aware FPGA-based accelerator design, SWAT, that efficiently leverages the sparsity to achieve scalable performance for long input.
arXiv Detail & Related papers (2024-05-27T10:25:08Z) - An FPGA-Based Reconfigurable Accelerator for Convolution-Transformer Hybrid EfficientViT [5.141764719319689]
We propose an FPGA-based accelerator for EfficientViT to advance the hardware efficiency frontier of ViTs.
Specifically, we design a reconfigurable architecture to efficiently support various operation types, including lightweight convolutions and attention.
Experimental results show that our accelerator achieves up to 780.2 GOPS in throughput and 105.1 GOPS/W in energy efficiency at 200MHz.
arXiv Detail & Related papers (2024-03-29T15:20:33Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
Large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads.
This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs.
arXiv Detail & Related papers (2023-12-23T04:27:06Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - Adaptable Butterfly Accelerator for Attention-based NNs via Hardware and
Algorithm Co-design [66.39546326221176]
Attention-based neural networks have become pervasive in many AI tasks.
The use of the attention mechanism and feed-forward network (FFN) demands excessive computational and memory resources.
This paper proposes a hardware-friendly variant that adopts a unified butterfly sparsity pattern to approximate both the attention mechanism and the FFNs.
arXiv Detail & Related papers (2022-09-20T09:28:26Z) - Auto-ViT-Acc: An FPGA-Aware Automatic Acceleration Framework for Vision
Transformer with Mixed-Scheme Quantization [78.18328503396057]
Vision transformers (ViTs) are emerging with significantly improved accuracy in computer vision tasks.
This work proposes an FPGA-aware automatic ViT acceleration framework based on the proposed mixed-scheme quantization.
arXiv Detail & Related papers (2022-08-10T05:54:46Z) - A Length Adaptive Algorithm-Hardware Co-design of Transformer on FPGA
Through Sparse Attention and Dynamic Pipelining [28.336502115532905]
This paper proposes a coherent sequence length adaptive algorithm-hardware co-design for Transformer acceleration.
We develop a hardware-friendly sparse attention operator and a length-aware hardware resource scheduling algorithm.
Our design has very small accuracy loss and has 80.2 $times$ and 2.6 $times$ speedup compared to CPU and GPU implementation.
arXiv Detail & Related papers (2022-08-07T05:48:38Z) - VAQF: Fully Automatic Software-hardware Co-design Framework for Low-bit
Vision Transformer [121.85581713299918]
We propose VAQF, a framework that builds inference accelerators on FPGA platforms for quantized Vision Transformers (ViTs)
Given the model structure and the desired frame rate, VAQF will automatically output the required quantization precision for activations.
This is the first time quantization has been incorporated into ViT acceleration on FPGAs.
arXiv Detail & Related papers (2022-01-17T20:27:52Z) - A fully pipelined FPGA accelerator for scale invariant feature transform
keypoint descriptor matching, [0.0]
We design a novel fully pipelined hardware accelerator architecture for SIFT keypoint descriptor matching.
The proposed hardware architecture is able to properly handle the memory bandwidth necessary for a fully-pipelined implementation.
Our hardware implementation is 15.7 times faster than the comparable software approach.
arXiv Detail & Related papers (2020-12-17T15:29:41Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks.
We present EdgeBERT, an in-depth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP.
arXiv Detail & Related papers (2020-11-28T19:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.