Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference
- URL: http://arxiv.org/abs/2312.15159v2
- Date: Sun, 7 Apr 2024 06:03:02 GMT
- Title: Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference
- Authors: Hongzheng Chen, Jiahao Zhang, Yixiao Du, Shaojie Xiang, Zichao Yue, Niansong Zhang, Yaohui Cai, Zhiru Zhang,
- Abstract summary: Large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads.
This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs.
- Score: 11.614722231006695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) boasting billions of parameters have generated a significant demand for efficient deployment in inference workloads. The majority of existing approaches rely on temporal architectures that reuse hardware units for different network layers and operators. However, these methods often encounter challenges in achieving low latency due to considerable memory access overhead. This paper investigates the feasibility and potential of model-specific spatial acceleration for LLM inference on FPGAs. Our approach involves the specialization of distinct hardware units for specific operators or layers, facilitating direct communication between them through a dataflow architecture while minimizing off-chip memory accesses. We introduce a comprehensive analytical model for estimating the performance of a spatial LLM accelerator, taking into account the on-chip compute and memory resources available on an FPGA. Through our analysis, we can determine the scenarios in which FPGA-based spatial acceleration can outperform its GPU-based counterpart. To enable more productive implementations of an LLM model on FPGAs, we further provide a library of high-level synthesis (HLS) kernels that are composable and reusable. This library will be made available as open-source. To validate the effectiveness of both our analytical model and HLS library, we have implemented BERT and GPT2 on an AMD Alveo U280 FPGA device. Experimental results demonstrate our approach can achieve up to 13.4x speedup when compared to previous FPGA-based accelerators for the BERT model. For GPT generative inference, we attain a 2.2x speedup compared to DFX, an FPGA overlay, in the prefill stage, while achieving a 1.9x speedup and a 5.7x improvement in energy efficiency compared to the NVIDIA A100 GPU in the decode stage.
Related papers
- LUTMUL: Exceed Conventional FPGA Roofline Limit by LUT-based Efficient Multiplication for Neural Network Inference [25.342107763021147]
This paper introduces LUTMUL, which harnesses the potential of look-up tables (LUTs) for performing multiplications.
By exploiting this advantage of LUTs, our method demonstrates a potential boost in the performance of FPGA-based neural network accelerators.
arXiv Detail & Related papers (2024-11-01T02:54:11Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE.
Our results demonstrate an average 21% improvement in prefill throughput over existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - Designing Efficient LLM Accelerators for Edge Devices [1.4128048241287314]
Large Language Models (LLMs) can be deployed on resource-constrained edge devices to reduce reliance on network connections and provide more privacy.
To address this issue, designing new and efficient edge accelerators for LLM inference is crucial.
We propose SECDA-LLM, that utilizes the SECDA methodology to streamline the process of designing, integrating, and deploying efficient FPGA-based LLM accelerators.
arXiv Detail & Related papers (2024-08-01T11:06:05Z) - Investigating Resource-efficient Neutron/Gamma Classification ML Models Targeting eFPGAs [0.0]
Open-source embedded FPGA (eFPGA) frameworks provide an alternate, more flexible pathway for implementing machine learning models in hardware.
We explore the parameter space for eFPGA implementations of fully-connected neural network (fcNN) and boosted decision tree (BDT) models.
The results of the study will be used to aid the specification of an eFPGA fabric, which will be integrated as part of a test chip.
arXiv Detail & Related papers (2024-04-19T20:03:30Z) - SATAY: A Streaming Architecture Toolflow for Accelerating YOLO Models on
FPGA Devices [48.47320494918925]
This work tackles the challenges of deploying stateof-the-art object detection models onto FPGA devices for ultralow latency applications.
We employ a streaming architecture design for our YOLO accelerators, implementing the complete model on-chip in a deeply pipelined fashion.
We introduce novel hardware components to support the operations of YOLO models in a dataflow manner, and off-chip memory buffering to address the limited on-chip memory resources.
arXiv Detail & Related papers (2023-09-04T13:15:01Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark [11.575901540758574]
We present our development experience for the Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms.
We use the open-source hls4ml and FINN perJ, which aim to democratize AI- hardware codesign of optimized neural networks on FPGAs.
The solutions are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms.
arXiv Detail & Related papers (2022-06-23T15:57:17Z) - Accelerated Charged Particle Tracking with Graph Neural Networks on
FPGAs [0.0]
We develop and study FPGA implementations of algorithms for charged particle tracking based on graph neural networks.
We find a considerable speedup over CPU-based execution is possible, potentially enabling such algorithms to be used effectively in future computing.
arXiv Detail & Related papers (2020-11-30T18:17:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.