論文の概要: SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images
- arxiv url: http://arxiv.org/abs/2407.17956v1
- Date: Thu, 25 Jul 2024 11:22:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 14:18:40.980472
- Title: SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images
- Title(参考訳): SaccadeDet:ギガピクセル画像の高速かつ高精度検出のための新しいデュアルステージアーキテクチャ
- Authors: Wenxi Li, Ruxin Zhang, Haozhe Lin, Yuchen Guo, Chao Ma, Xiaokang Yang,
- Abstract要約: SaccadeDetは、人間の目の動きにインスパイアされた、ギガピクセルレベルの物体検出のための革新的なアーキテクチャである。
PANDAデータセットを用いて評価した本手法は,最先端手法の8倍の高速化を実現する。
また、全スライドイメージングへの応用を通じて、ギガピクセルレベルの病理解析に有意な可能性を示す。
- 参考スコア(独自算出の注目度): 50.742420049839474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of deep learning in object detection has predominantly focused on megapixel images, leaving a critical gap in the efficient processing of gigapixel images. These super high-resolution images present unique challenges due to their immense size and computational demands. To address this, we introduce 'SaccadeDet', an innovative architecture for gigapixel-level object detection, inspired by the human eye saccadic movement. The cornerstone of SaccadeDet is its ability to strategically select and process image regions, dramatically reducing computational load. This is achieved through a two-stage process: the 'saccade' stage, which identifies regions of probable interest, and the 'gaze' stage, which refines detection in these targeted areas. Our approach, evaluated on the PANDA dataset, not only achieves an 8x speed increase over the state-of-the-art methods but also demonstrates significant potential in gigapixel-level pathology analysis through its application to Whole Slide Imaging.
- Abstract(参考訳): 物体検出における深層学習の進歩は、主にメガピクセル画像に焦点を当てており、ギガピクセル画像の効率的な処理において重要なギャップを残している。
これらの超高解像度画像は、その巨大なサイズと計算要求のためにユニークな課題を呈している。
そこで我々は,人間の眼球運動に触発された,ギガピクセルレベルの物体検出のための革新的なアーキテクチャであるSaccadeDetを紹介した。
SaccadeDetの基盤は、画像領域を戦略的に選択し、処理し、計算負荷を劇的に削減する能力である。
これは、2段階のプロセスによって達成される: 確率的な興味のある領域を特定する「サケード」段階と、これらの対象領域における検出を洗練させる「ゲイズ」段階である。
我々のアプローチはPANDAデータセットに基づいて評価され、最先端の手法よりも8倍の速度向上を達成するだけでなく、全スライドイメージングへの応用を通じて、ギガピクセルレベルの病理解析に有意な可能性を示す。
関連論文リスト
- Ground-based image deconvolution with Swin Transformer UNet [2.41675832913699]
Swin Transformerアーキテクチャを用いた2段階のデコンボリューションフレームワークを提案する。
我々の研究は、ディープラーニングベースのソリューションが、科学的分析の範囲を制限してバイアスをもたらすことを明らかにした。
本稿では,スポーシティウェーブレットフレームワークの活性係数に依存する新しい第3ステップを提案する。
論文 参考訳(メタデータ) (2024-05-13T15:30:41Z) - Resource Efficient Perception for Vision Systems [0.0]
本研究では,高解像度画像に対するメモリ効率のパッチベース処理を活用することにより,これらの課題を軽減するためのフレームワークを提案する。
ローカルなパッチ情報と共にグローバルなコンテキスト表現が組み込まれており、画像の内容の包括的な理解を可能にする。
分類,オブジェクト検出,セグメンテーションにまたがる7つのベンチマークにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-05-12T05:33:00Z) - Neural Network-Based Processing and Reconstruction of Compromised Biophotonic Image Data [0.12427543342032196]
深層学習技術とバイオフォトニクス装置の統合により、バイオイメージングの新しい地平が開かれた。
本稿は、バイオフォトニクス装置において、研究者が故意に障害を負う様々な測定の側面について、詳細なレビューを提供する。
我々はこの戦略アプローチをうまく活用した様々なバイオフォトニクス手法について論じる。
論文 参考訳(メタデータ) (2024-03-21T11:44:25Z) - Memory-Constrained Semantic Segmentation for Ultra-High Resolution UAV
Imagery [35.96063342025938]
本稿では,超高解像度UAV画像の高効率・高効率セグメンテーションを実現するための複雑な課題について検討する。
本稿では、ローカルパッチ以外のコンテキストにアクセスすることなく、ローカル推論のためのGPUメモリ効率が高く効果的なフレームワークを提案する。
基礎となる高解像度情報の潜在的な意味バイアスを補正するために,効率的なメモリベースインタラクション方式を提案する。
論文 参考訳(メタデータ) (2023-10-07T07:44:59Z) - Accurate Gigapixel Crowd Counting by Iterative Zooming and Refinement [90.76576712433595]
GigaZoomは画像の最も密度の高い領域を反復的にズームし、より詳細な粗い密度マップを洗練します。
ギガZoomは,ギガピクセルの群衆計数のための最先端技術を取得し,次のベストメソッドの精度を42%向上させることを示す。
論文 参考訳(メタデータ) (2023-05-16T08:25:27Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - Generating Superpixels for High-resolution Images with Decoupled Patch
Calibration [82.21559299694555]
Patch Networks (PCNet) は高解像度のスーパーピクセルセグメンテーションを効率的かつ正確に実装するように設計されている。
DPCは高解像度画像から局所パッチを取得し、動的にバイナリマスクを生成し、ネットワークを領域境界に集中させる。
特に、DPCは高解像度画像からローカルパッチを取り、動的にバイナリマスクを生成して、ネットワークを領域境界に集中させる。
論文 参考訳(メタデータ) (2021-08-19T10:33:05Z) - You Better Look Twice: a new perspective for designing accurate
detectors with reduced computations [56.34005280792013]
BLT-netは、新しい低計算の2段階オブジェクト検出アーキテクチャである。
非常にエレガントな第1ステージを使用して、オブジェクトをバックグラウンドから分離することで、計算を削減します。
結果のイメージ提案は、高度に正確なモデルによって第2段階で処理される。
論文 参考訳(メタデータ) (2021-07-21T12:39:51Z) - Exploiting Raw Images for Real-Scene Super-Resolution [105.18021110372133]
本稿では,合成データと実撮影画像とのギャップを埋めるために,実シーンにおける単一画像の超解像化の問題について検討する。
本稿では,デジタルカメラの撮像過程を模倣して,よりリアルなトレーニングデータを生成する手法を提案する。
また、原画像に記録された放射情報を活用するために、2分岐畳み込みニューラルネットワークを開発した。
論文 参考訳(メタデータ) (2021-02-02T16:10:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。