Lightweight Language-driven Grasp Detection using Conditional Consistency Model
- URL: http://arxiv.org/abs/2407.17967v1
- Date: Thu, 25 Jul 2024 11:39:20 GMT
- Title: Lightweight Language-driven Grasp Detection using Conditional Consistency Model
- Authors: Nghia Nguyen, Minh Nhat Vu, Baoru Huang, An Vuong, Ngan Le, Thieu Vo, Anh Nguyen,
- Abstract summary: We present a new approach for language-driven grasp detection that leverages the concept of lightweight diffusion models.
Our method can effectively encode visual and textual information, enabling more accurate and versatile grasp positioning.
We further validate our method in real-world robotic experiments to demonstrate its fast inference time capability.
- Score: 10.254392362201308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language-driven grasp detection is a fundamental yet challenging task in robotics with various industrial applications. In this work, we present a new approach for language-driven grasp detection that leverages the concept of lightweight diffusion models to achieve fast inference time. By integrating diffusion processes with grasping prompts in natural language, our method can effectively encode visual and textual information, enabling more accurate and versatile grasp positioning that aligns well with the text query. To overcome the long inference time problem in diffusion models, we leverage the image and text features as the condition in the consistency model to reduce the number of denoising timesteps during inference. The intensive experimental results show that our method outperforms other recent grasp detection methods and lightweight diffusion models by a clear margin. We further validate our method in real-world robotic experiments to demonstrate its fast inference time capability.
Related papers
- Decoding Diffusion: A Scalable Framework for Unsupervised Analysis of Latent Space Biases and Representations Using Natural Language Prompts [68.48103545146127]
This paper proposes a novel framework for unsupervised exploration of diffusion latent spaces.
We directly leverage natural language prompts and image captions to map latent directions.
Our method provides a more scalable and interpretable understanding of the semantic knowledge encoded within diffusion models.
arXiv Detail & Related papers (2024-10-25T21:44:51Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
arXiv Detail & Related papers (2024-07-31T16:13:29Z) - Language-driven Grasp Detection with Mask-guided Attention [10.231956034184265]
We propose a new method for language-driven grasp detection with mask-guided attention.
Our approach integrates visual data, segmentation mask features, and natural language instructions.
Our work introduces a new framework for language-driven grasp detection, paving the way for language-driven robotic applications.
arXiv Detail & Related papers (2024-07-29T10:55:17Z) - Language-driven Grasp Detection [12.78625719116471]
We introduce a new language-driven grasp detection dataset featuring 1M samples, over 3M objects, and upwards of 10M grasping instructions.
We propose a new language-driven grasp detection method based on diffusion models.
Our method outperforms state-of-the-art approaches and allows real-world robotic grasping.
arXiv Detail & Related papers (2024-06-13T16:06:59Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
This paper proposes Language Rectified Flow (ours)
Our method is based on the reformulation of the standard probabilistic flow models.
Experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
arXiv Detail & Related papers (2024-03-25T17:58:22Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z) - Probing via Prompting [71.7904179689271]
This paper introduces a novel model-free approach to probing, by formulating probing as a prompting task.
We conduct experiments on five probing tasks and show that our approach is comparable or better at extracting information than diagnostic probes.
We then examine the usefulness of a specific linguistic property for pre-training by removing the heads that are essential to that property and evaluating the resulting model's performance on language modeling.
arXiv Detail & Related papers (2022-07-04T22:14:40Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - Sample Efficient Approaches for Idiomaticity Detection [6.481818246474555]
This work explores sample efficient methods of idiomaticity detection.
In particular, we study the impact of Pattern Exploit Training (PET), a few-shot method of classification, and BERTRAM, an efficient method of creating contextual embeddings.
Our experiments show that whilePET improves performance on English, they are much less effective on Portuguese and Galician, leading to an overall performance about on par with vanilla mBERT.
arXiv Detail & Related papers (2022-05-23T13:46:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.