Detecting, Explaining, and Mitigating Memorization in Diffusion Models
- URL: http://arxiv.org/abs/2407.21720v1
- Date: Wed, 31 Jul 2024 16:13:29 GMT
- Title: Detecting, Explaining, and Mitigating Memorization in Diffusion Models
- Authors: Yuxin Wen, Yuchen Liu, Chen Chen, Lingjuan Lyu,
- Abstract summary: We introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions.
Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step.
Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization.
- Score: 49.438362005962375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs in diffusion models have exhibited exceptional image-generation capabilities. However, studies show that some outputs are merely replications of training data. Such replications present potential legal challenges for model owners, especially when the generated content contains proprietary information. In this work, we introduce a straightforward yet effective method for detecting memorized prompts by inspecting the magnitude of text-conditional predictions. Our proposed method seamlessly integrates without disrupting sampling algorithms, and delivers high accuracy even at the first generation step, with a single generation per prompt. Building on our detection strategy, we unveil an explainable approach that shows the contribution of individual words or tokens to memorization. This offers an interactive medium for users to adjust their prompts. Moreover, we propose two strategies i.e., to mitigate memorization by leveraging the magnitude of text-conditional predictions, either through minimization during inference or filtering during training. These proposed strategies effectively counteract memorization while maintaining high-generation quality. Code is available at https://github.com/YuxinWenRick/diffusion_memorization.
Related papers
- Predicting and analyzing memorization within fine-tuned Large Language Models [0.0]
Large Language Models memorize a significant proportion of their training data, posing a serious threat when disclosed at inference time.
We propose a new approach based on sliced mutual information to detect memorized samples a priori.
We obtain strong empirical results, paving the way for systematic inspection and protection of these vulnerable samples before memorization happens.
arXiv Detail & Related papers (2024-09-27T15:53:55Z) - Unlocking Memorization in Large Language Models with Dynamic Soft Prompting [66.54460367290146]
Large language models (LLMs) have revolutionized natural language processing (NLP) tasks such as summarization, question answering, and translation.
LLMs pose significant security risks due to their tendency to memorize training data, leading to potential privacy breaches and copyright infringement.
We propose a novel method for estimating LLM memorization using dynamic, prefix-dependent soft prompts.
arXiv Detail & Related papers (2024-09-20T18:56:32Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
Diffusion models are known for their tremendous ability to generate novel and high-quality samples.
Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies.
We propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2024-07-22T02:19:30Z) - Memorized Images in Diffusion Models share a Subspace that can be Located and Deleted [15.162296378581853]
Large-scale text-to-image diffusion models excel in generating high-quality images from textual inputs.
Concerns arise as research indicates their tendency to memorize and replicate training data.
Efforts within the text-to-image community to address memorization explore causes such as data duplication, replicated captions, or trigger tokens.
arXiv Detail & Related papers (2024-06-01T15:47:13Z) - Could It Be Generated? Towards Practical Analysis of Memorization in Text-To-Image Diffusion Models [39.607005089747936]
We perform practical analysis of memorization in text-to-image diffusion models.
We identify three necessary conditions of memorization, respectively similarity, existence and probability.
We then reveal the correlation between the model's prediction error and image replication.
arXiv Detail & Related papers (2024-05-09T15:32:00Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
Large Language Models are susceptible to adversarial prompt attacks.
This vulnerability underscores a significant concern regarding the robustness and reliability of LLMs.
We introduce a novel approach to detecting adversarial prompts at a token level.
arXiv Detail & Related papers (2023-11-20T03:17:21Z) - Adaptive Fake Audio Detection with Low-Rank Model Squeezing [50.7916414913962]
Traditional approaches, such as finetuning, are computationally intensive and pose a risk of impairing the acquired knowledge of known fake audio types.
We introduce the concept of training low-rank adaptation matrices tailored specifically to the newly emerging fake audio types.
Our approach offers several advantages, including reduced storage memory requirements and lower equal error rates.
arXiv Detail & Related papers (2023-06-08T06:06:42Z) - Preventing Verbatim Memorization in Language Models Gives a False Sense
of Privacy [91.98116450958331]
We argue that verbatim memorization definitions are too restrictive and fail to capture more subtle forms of memorization.
Specifically, we design and implement an efficient defense that perfectly prevents all verbatim memorization.
We conclude by discussing potential alternative definitions and why defining memorization is a difficult yet crucial open question for neural language models.
arXiv Detail & Related papers (2022-10-31T17:57:55Z) - Exploring Memorization in Adversarial Training [58.38336773082818]
We investigate the memorization effect in adversarial training (AT) for promoting a deeper understanding of capacity, convergence, generalization, and especially robust overfitting.
We propose a new mitigation algorithm motivated by detailed memorization analyses.
arXiv Detail & Related papers (2021-06-03T05:39:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.