Network Inversion of Convolutional Neural Nets
- URL: http://arxiv.org/abs/2407.18002v1
- Date: Thu, 25 Jul 2024 12:53:21 GMT
- Title: Network Inversion of Convolutional Neural Nets
- Authors: Pirzada Suhail, Amit Sethi,
- Abstract summary: Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes"
Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes.
This paper presents a simple yet effective approach to network inversion using a carefully conditioned generator that learns the data distribution in the input space of the trained neural network.
- Score: 3.004632712148892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a carefully conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we hideously encode the conditioning label information into vectors, further exemplified by heavy dropout in the generation process and minimisation of cosine similarity between the features corresponding to the generated images. The paper concludes with immediate applications of Network Inversion including in interpretability, explainability and generation of adversarial samples.
Related papers
- Perturbation on Feature Coalition: Towards Interpretable Deep Neural Networks [0.1398098625978622]
The "black box" nature of deep neural networks (DNNs) compromises their transparency and reliability.
We introduce a perturbation-based interpretation guided by feature coalitions, which leverages deep information of network to extract correlated features.
arXiv Detail & Related papers (2024-08-23T22:44:21Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Opening the Black Box: predicting the trainability of deep neural networks with reconstruction entropy [0.0]
We present a method for predicting the trainable regime in parameter space for deep feedforward neural networks.
For both the MNIST and CIFAR10 datasets, we show that a single epoch of training is sufficient to predict the trainability of the deep feedforward network.
arXiv Detail & Related papers (2024-06-13T18:00:05Z) - Network Inversion of Binarised Neural Nets [3.5571131514746837]
Network inversion plays a pivotal role in unraveling the black-box nature of input to output mappings in neural networks.
This paper introduces a novel approach to invert a trained BNN by encoding it into a CNF formula that captures the network's structure.
arXiv Detail & Related papers (2024-02-19T09:39:54Z) - Effective and Interpretable Information Aggregation with Capacity
Networks [3.4012007729454807]
Capacity networks generate multiple interpretable intermediate results which can be aggregated in a semantically meaningful space.
Our experiments show that implementing this simple inductive bias leads to improvements over different encoder-decoder architectures.
arXiv Detail & Related papers (2022-07-25T09:45:16Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-Output Observations [143.3053365553897]
We describe a procedure for removing dependency on a cohort of training data from a trained deep network.
We introduce a new bound on how much information can be extracted per query about the forgotten cohort.
We exploit the connections between the activation and weight dynamics of a DNN inspired by Neural Tangent Kernels to compute the information in the activations.
arXiv Detail & Related papers (2020-03-05T23:17:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.