Perturbation on Feature Coalition: Towards Interpretable Deep Neural Networks
- URL: http://arxiv.org/abs/2408.13397v1
- Date: Fri, 23 Aug 2024 22:44:21 GMT
- Title: Perturbation on Feature Coalition: Towards Interpretable Deep Neural Networks
- Authors: Xuran Hu, Mingzhe Zhu, Zhenpeng Feng, Miloš Daković, Ljubiša Stanković,
- Abstract summary: The "black box" nature of deep neural networks (DNNs) compromises their transparency and reliability.
We introduce a perturbation-based interpretation guided by feature coalitions, which leverages deep information of network to extract correlated features.
- Score: 0.1398098625978622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inherent "black box" nature of deep neural networks (DNNs) compromises their transparency and reliability. Recently, explainable AI (XAI) has garnered increasing attention from researchers. Several perturbation-based interpretations have emerged. However, these methods often fail to adequately consider feature dependencies. To solve this problem, we introduce a perturbation-based interpretation guided by feature coalitions, which leverages deep information of network to extract correlated features. Then, we proposed a carefully-designed consistency loss to guide network interpretation. Both quantitative and qualitative experiments are conducted to validate the effectiveness of our proposed method. Code is available at github.com/Teriri1999/Perturebation-on-Feature-Coalition.
Related papers
- Negative Flux Aggregation to Estimate Feature Attributions [15.411534490483495]
There are increasing demands for understanding deep neural networks' (DNNs) behavior spurred by growing security and/or transparency concerns.
To enhance the explainability of DNNs, we estimate the input feature's attributions to the prediction task using divergence and flux.
Inspired by the divergence theorem in vector analysis, we develop a novel Negative Flux Aggregation (NeFLAG) formulation and an efficient approximation algorithm to estimate attribution map.
arXiv Detail & Related papers (2023-01-17T16:19:41Z) - Information Removal at the bottleneck in Deep Neural Networks [3.1473798197405944]
We propose IRENE, a method to achieve information removal at the bottleneck of deep neural networks.
Experiments on a synthetic dataset and on CelebA validate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2022-09-30T14:20:21Z) - A neural anisotropic view of underspecification in deep learning [60.119023683371736]
We show that the way neural networks handle the underspecification of problems is highly dependent on the data representation.
Our results highlight that understanding the architectural inductive bias in deep learning is fundamental to address the fairness, robustness, and generalization of these systems.
arXiv Detail & Related papers (2021-04-29T14:31:09Z) - Multivariate Deep Evidential Regression [77.34726150561087]
A new approach with uncertainty-aware neural networks shows promise over traditional deterministic methods.
We discuss three issues with a proposed solution to extract aleatoric and epistemic uncertainties from regression-based neural networks.
arXiv Detail & Related papers (2021-04-13T12:20:18Z) - Ada-SISE: Adaptive Semantic Input Sampling for Efficient Explanation of
Convolutional Neural Networks [26.434705114982584]
We propose an efficient interpretation method for convolutional neural networks.
Experimental results show that the proposed method can reduce the execution time up to 30%.
arXiv Detail & Related papers (2021-02-15T19:10:00Z) - Making Neural Networks Interpretable with Attribution: Application to
Implicit Signals Prediction [11.427019313283997]
We propose a novel formulation of interpretable deep neural networks for the attribution task.
Using masked weights, hidden features can be deeply attributed, split into several input-restricted sub-networks and trained as a boosted mixture of experts.
arXiv Detail & Related papers (2020-08-26T06:46:49Z) - How Much Can I Trust You? -- Quantifying Uncertainties in Explaining
Neural Networks [19.648814035399013]
Explainable AI (XAI) aims to provide interpretations for predictions made by learning machines, such as deep neural networks.
We propose a new framework that allows to convert any arbitrary explanation method for neural networks into an explanation method for Bayesian neural networks.
We demonstrate the effectiveness and usefulness of our approach extensively in various experiments.
arXiv Detail & Related papers (2020-06-16T08:54:42Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-Output Observations [143.3053365553897]
We describe a procedure for removing dependency on a cohort of training data from a trained deep network.
We introduce a new bound on how much information can be extracted per query about the forgotten cohort.
We exploit the connections between the activation and weight dynamics of a DNN inspired by Neural Tangent Kernels to compute the information in the activations.
arXiv Detail & Related papers (2020-03-05T23:17:35Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z) - Hold me tight! Influence of discriminative features on deep network
boundaries [63.627760598441796]
We propose a new perspective that relates dataset features to the distance of samples to the decision boundary.
This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets.
arXiv Detail & Related papers (2020-02-15T09:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.