Network Inversion of Convolutional Neural Nets
- URL: http://arxiv.org/abs/2407.18002v2
- Date: Tue, 26 Nov 2024 09:39:49 GMT
- Title: Network Inversion of Convolutional Neural Nets
- Authors: Pirzada Suhail, Amit Sethi,
- Abstract summary: Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque.
Network inversion techniques offer a solution by allowing us to peek inside these black boxes.
This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator.
- Score: 3.004632712148892
- License:
- Abstract: Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we encode the conditioning label information into vectors and intermediate matrices and further minimize the cosine similarity between features of the generated images.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.
This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Opening the Black Box: predicting the trainability of deep neural networks with reconstruction entropy [0.0]
We present a method for predicting the trainable regime in parameter space for deep feedforward neural networks.
For both the MNIST and CIFAR10 datasets, we show that a single epoch of training is sufficient to predict the trainability of the deep feedforward network.
arXiv Detail & Related papers (2024-06-13T18:00:05Z) - Network Inversion of Binarised Neural Nets [3.5571131514746837]
Network inversion plays a pivotal role in unraveling the black-box nature of input to output mappings in neural networks.
This paper introduces a novel approach to invert a trained BNN by encoding it into a CNF formula that captures the network's structure.
arXiv Detail & Related papers (2024-02-19T09:39:54Z) - Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation [19.302294715542175]
We propose densely decoded networks (ddn), by selectively introducing 'crutch' network connections.
Such 'crutch' connections in each upsampling stage of the network decoder enhance target localization.
We also present a training strategy based on adaptive deep supervision (ads), which exploits and adapts specific attributes of input dataset.
arXiv Detail & Related papers (2024-02-05T00:44:57Z) - Effective and Interpretable Information Aggregation with Capacity
Networks [3.4012007729454807]
Capacity networks generate multiple interpretable intermediate results which can be aggregated in a semantically meaningful space.
Our experiments show that implementing this simple inductive bias leads to improvements over different encoder-decoder architectures.
arXiv Detail & Related papers (2022-07-25T09:45:16Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-Output Observations [143.3053365553897]
We describe a procedure for removing dependency on a cohort of training data from a trained deep network.
We introduce a new bound on how much information can be extracted per query about the forgotten cohort.
We exploit the connections between the activation and weight dynamics of a DNN inspired by Neural Tangent Kernels to compute the information in the activations.
arXiv Detail & Related papers (2020-03-05T23:17:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.