Network Inversion and Its Applications
- URL: http://arxiv.org/abs/2411.17777v1
- Date: Tue, 26 Nov 2024 10:04:52 GMT
- Title: Network Inversion and Its Applications
- Authors: Pirzada Suhail, Hao Tang, Amit Sethi,
- Abstract summary: Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes"
Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes.
This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator that learns the data distribution in the input space of the trained neural network.
- Score: 9.124933643129538
- License:
- Abstract: Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque, leading to them being perceived as "black boxes." This opacity raises concerns about their interpretability and reliability, especially in safety-critical scenarios. Network inversion techniques offer a solution by allowing us to peek inside these black boxes, revealing the features and patterns learned by the networks behind their decision-making processes and thereby provide valuable insights into how neural networks arrive at their conclusions, making them more interpretable and trustworthy. This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator that learns the data distribution in the input space of the trained neural network, enabling the reconstruction of inputs that would most likely lead to the desired outputs. To capture the diversity in the input space for a given output, instead of simply revealing the conditioning labels to the generator, we encode the conditioning label information into vectors and intermediate matrices and further minimize the cosine similarity between features of the generated images. Additionally, we incorporate feature orthogonality as a regularization term to boost image diversity which penalises the deviations of the Gram matrix of the features from the identity matrix, ensuring orthogonality and promoting distinct, non-redundant representations for each label. The paper concludes by exploring immediate applications of the proposed network inversion approach in interpretability, out-of-distribution detection, and training data reconstruction.
Related papers
- Network Inversion of Convolutional Neural Nets [3.004632712148892]
Neural networks have emerged as powerful tools across various applications, yet their decision-making process often remains opaque.
Network inversion techniques offer a solution by allowing us to peek inside these black boxes.
This paper presents a simple yet effective approach to network inversion using a meticulously conditioned generator.
arXiv Detail & Related papers (2024-07-25T12:53:21Z) - Network Inversion of Binarised Neural Nets [3.5571131514746837]
Network inversion plays a pivotal role in unraveling the black-box nature of input to output mappings in neural networks.
This paper introduces a novel approach to invert a trained BNN by encoding it into a CNF formula that captures the network's structure.
arXiv Detail & Related papers (2024-02-19T09:39:54Z) - Densely Decoded Networks with Adaptive Deep Supervision for Medical
Image Segmentation [19.302294715542175]
We propose densely decoded networks (ddn), by selectively introducing 'crutch' network connections.
Such 'crutch' connections in each upsampling stage of the network decoder enhance target localization.
We also present a training strategy based on adaptive deep supervision (ads), which exploits and adapts specific attributes of input dataset.
arXiv Detail & Related papers (2024-02-05T00:44:57Z) - CONVERT:Contrastive Graph Clustering with Reliable Augmentation [110.46658439733106]
We propose a novel CONtrastiVe Graph ClustEring network with Reliable AugmenTation (CONVERT)
In our method, the data augmentations are processed by the proposed reversible perturb-recover network.
To further guarantee the reliability of semantics, a novel semantic loss is presented to constrain the network.
arXiv Detail & Related papers (2023-08-17T13:07:09Z) - Self-Conditioned Generative Adversarial Networks for Image Editing [61.50205580051405]
Generative Adversarial Networks (GANs) are susceptible to bias, learned from either the unbalanced data, or through mode collapse.
We argue that this bias is responsible not only for fairness concerns, but that it plays a key role in the collapse of latent-traversal editing methods when deviating away from the distribution's core.
arXiv Detail & Related papers (2022-02-08T18:08:24Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - CMTR: Cross-modality Transformer for Visible-infrared Person
Re-identification [38.96033760300123]
Cross-modality transformer-based method (CMTR) for visible-infrared person re-identification task.
We design the novel modality embeddings, which are fused with token embeddings to encode modalities' information.
Our proposed CMTR model's performance significantly surpasses existing outstanding CNN-based methods.
arXiv Detail & Related papers (2021-10-18T03:12:59Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z) - Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-Output Observations [143.3053365553897]
We describe a procedure for removing dependency on a cohort of training data from a trained deep network.
We introduce a new bound on how much information can be extracted per query about the forgotten cohort.
We exploit the connections between the activation and weight dynamics of a DNN inspired by Neural Tangent Kernels to compute the information in the activations.
arXiv Detail & Related papers (2020-03-05T23:17:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.