論文の概要: How to Train the Teacher Model for Effective Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2407.18041v1
- Date: Thu, 25 Jul 2024 13:39:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:58:54.091616
- Title: How to Train the Teacher Model for Effective Knowledge Distillation
- Title(参考訳): 効果的な知識蒸留のための教師モデルの訓練方法
- Authors: Shayan Mohajer Hamidi, Xizhen Deng, Renhao Tan, Linfeng Ye, Ahmed Hussein Salamah,
- Abstract要約: MSE損失を伴う教師モデルの訓練は、MSEの出力とBCPDの最小化に等しい。
クロスエントロピーの損失で訓練された教師を、最先端のKD手法でMSEの損失で訓練した教師に置き換えることによって、学生の精度は一貫して向上する。
- 参考スコア(独自算出の注目度): 0.3495246564946556
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recently, it was shown that the role of the teacher in knowledge distillation (KD) is to provide the student with an estimate of the true Bayes conditional probability density (BCPD). Notably, the new findings propose that the student's error rate can be upper-bounded by the mean squared error (MSE) between the teacher's output and BCPD. Consequently, to enhance KD efficacy, the teacher should be trained such that its output is close to BCPD in MSE sense. This paper elucidates that training the teacher model with MSE loss equates to minimizing the MSE between its output and BCPD, aligning with its core responsibility of providing the student with a BCPD estimate closely resembling it in MSE terms. In this respect, through a comprehensive set of experiments, we demonstrate that substituting the conventional teacher trained with cross-entropy loss with one trained using MSE loss in state-of-the-art KD methods consistently boosts the student's accuracy, resulting in improvements of up to 2.6\%.
- Abstract(参考訳): 近年,知識蒸留(KD)における教師の役割は,学生に真のベイズ条件付き確率密度(BCPD)の推定値を提供することが示されている。
特に,教師の出力とBCPDとの間の平均二乗誤差(MSE)により,生徒の誤差率を上限にすることができることが示唆された。
したがって、KD効果を高めるために、MSE感覚において出力がBCPDに近いように教師を訓練すべきである。
本稿では,MSE損失による教師モデルの訓練が,MSEの出力とBCPDの間のMSEの最小化に等しいことを明らかにする。
この点に関して、総合的な実験を通して、最先端KD法でMSE損失を訓練した教師にクロスエントロピー損失を訓練した教師に代えて、生徒の精度を継続的に向上させ、最大2.6\%の改善をもたらすことを実証した。
関連論文リスト
- Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
本研究では,高品質なトレーニングデータを生成するために,投機的知識蒸留(SKD)を導入する。
SKDでは、学生はトークンを提案し、教師はそれ自身の分布に基づいて低いランクのトークンを置き換える。
翻訳,要約,数学,指示文など,各種テキスト生成タスクにおけるSKDの評価を行った。
論文 参考訳(メタデータ) (2024-10-15T06:51:25Z) - Efficient and Robust Knowledge Distillation from A Stronger Teacher Based on Correlation Matching [0.09999629695552192]
相関マッチング知識蒸留 (CMKD) 法は, ピアソンとスピアマンの相関係数に基づくKD損失を組み合わせ, より効率的で堅牢な蒸留を実現している。
CMKDはシンプルだが実用的であり、CIRAR-100とImageNetの最先端性能を継続的に達成できることを広範な実験で実証している。
論文 参考訳(メタデータ) (2024-10-09T05:42:47Z) - Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
我々は,Relative Difficulty Distillation (RDD) というセマンティックセグメンテーションのための画素レベルのKDパラダイムを提案する。
RDDにより、教師ネットワークは、追加の最適化目標を伴わずに、学習焦点に対する効果的なガイダンスを提供することができる。
我々の研究は、RDDが既存のKDメソッドと統合して、上位パフォーマンスバウンダリを改善できることを示します。
論文 参考訳(メタデータ) (2024-07-04T08:08:25Z) - Improve Knowledge Distillation via Label Revision and Data Selection [37.74822443555646]
本稿では,教師の不正確な予測を基礎的真理を用いて修正することを提案する。
後者では,教師が指導する適切なトレーニングサンプルを選択するためのデータ選択手法を提案する。
実験の結果,提案手法の有効性を実証し,他の蒸留法と組み合わせることができることを示した。
論文 参考訳(メタデータ) (2024-04-03T02:41:16Z) - Bayes Conditional Distribution Estimation for Knowledge Distillation
Based on Conditional Mutual Information [3.84949625314596]
我々はベイズ条件付き確率分布(BCPD)の推定に条件付き相互情報(CMI)の概念を導入する。
MCMI推定では、教師のログライクな状態とCMIの両方を同時に最大化する。
その結果、ゼロショットや少数ショットの設定では、学生の精度が大幅に向上していることが判明した。
論文 参考訳(メタデータ) (2024-01-16T16:01:37Z) - Comparative Knowledge Distillation [102.35425896967791]
伝統的な知識蒸留(KD)は、頻繁な推論のために教師モデルに容易にアクセスできることを前提としている。
本稿では,教師モデルにおけるサンプルの解釈の微妙な違いを学生モデルに理解させるための比較知識蒸留(CKD)を提案する。
CKDは、アートデータ拡張とKDテクニックの状態を一貫して上回る。
論文 参考訳(メタデータ) (2023-11-03T21:55:33Z) - Faithful Knowledge Distillation [75.59907631395849]
i) 教師と学生は、正しく分類されたデータセットのサンプルに近い点で意見が一致しないか、(ii) 蒸留した学生は、データセットのサンプルに関する教師と同じくらい自信があるか、という2つの重要な質問に焦点をあてる。
これらは、安全クリティカルな設定の中で、堅牢な教師から訓練された小さな学生ネットワークを配置することを考えると、重要な問題である。
論文 参考訳(メタデータ) (2023-06-07T13:41:55Z) - Grouped Knowledge Distillation for Deep Face Recognition [53.57402723008569]
軽量の学生ネットワークは、モデル容量が低いため、ターゲットロジットの適合が困難である。
一次KDと二元KDを保持するが、最終的なKD損失計算では二次KDを省略するグループ知識蒸留(GKD)を提案する。
論文 参考訳(メタデータ) (2023-04-10T09:04:38Z) - On student-teacher deviations in distillation: does it pay to disobey? [54.908344098305804]
知識蒸留は「学生」ネットワークのテスト精度を向上させるために広く用いられている。
教師の確率に合うように訓練されているにもかかわらず、生徒は教師の確率から大きく逸脱するだけでなく、パフォーマンスにおいて教師を上回ることもある。
論文 参考訳(メタデータ) (2023-01-30T14:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。