論文の概要: LKCell: Efficient Cell Nuclei Instance Segmentation with Large Convolution Kernels
- arxiv url: http://arxiv.org/abs/2407.18054v1
- Date: Thu, 25 Jul 2024 14:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 13:49:09.705229
- Title: LKCell: Efficient Cell Nuclei Instance Segmentation with Large Convolution Kernels
- Title(参考訳): LKCell: 大きなコンボリューションカーネルを持つ効率的なセル核インスタンスセグメンテーション
- Authors: Ziwei Cui, Jingfeng Yao, Lunbin Zeng, Juan Yang, Wenyu Liu, Xinggang Wang,
- Abstract要約: 高精度で効率的なセル分割法であるLKCellを提案する。
その中心となる洞察は、計算効率のよい大きな受容場を達成するために、大きな畳み込みカーネルのポテンシャルを解き放つことである。
我々は,従来の手法の冗長性を解析し,大規模な畳み込みカーネルに基づく新しいセグメンテーションデコーダを設計する。
- 参考スコア(独自算出の注目度): 32.157968641130545
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The segmentation of cell nuclei in tissue images stained with the blood dye hematoxylin and eosin (H$\&$E) is essential for various clinical applications and analyses. Due to the complex characteristics of cellular morphology, a large receptive field is considered crucial for generating high-quality segmentation. However, previous methods face challenges in achieving a balance between the receptive field and computational burden. To address this issue, we propose LKCell, a high-accuracy and efficient cell segmentation method. Its core insight lies in unleashing the potential of large convolution kernels to achieve computationally efficient large receptive fields. Specifically, (1) We transfer pre-trained large convolution kernel models to the medical domain for the first time, demonstrating their effectiveness in cell segmentation. (2) We analyze the redundancy of previous methods and design a new segmentation decoder based on large convolution kernels. It achieves higher performance while significantly reducing the number of parameters. We evaluate our method on the most challenging benchmark and achieve state-of-the-art results (0.5080 mPQ) in cell nuclei instance segmentation with only 21.6% FLOPs compared with the previous leading method. Our source code and models are available at https://github.com/hustvl/LKCell.
- Abstract(参考訳): 血液色素ヘマトキシリンおよびエオシン(H$\&$E)で染色した組織像中の細胞核の分画は、様々な臨床応用と分析に不可欠である。
細胞形態の複雑な特徴により、高い品質のセグメンテーションを生み出すために大きな受容野が重要であると考えられている。
しかし, 従来の手法では, 受容場と計算負荷のバランスをとることが困難であった。
そこで本研究では,高精度で効率的なセル分割法であるLKCellを提案する。
その中心となる洞察は、計算効率のよい大きな受容場を達成するために、大きな畳み込みカーネルのポテンシャルを解き放つことである。
具体的には,(1) 予め訓練した大きな畳み込みカーネルモデルを初めて医療領域に移植し, 細胞分節化の有効性を実証する。
2) 従来の手法の冗長性を解析し, 大規模な畳み込みカーネルをベースとした新しいセグメンテーションデコーダを設計する。
高いパフォーマンスを実現し、パラメータの数を著しく削減します。
提案手法を最も難しいベンチマークで評価し, 細胞核インスタンスのセグメンテーションにおける最新結果(0.5080 mPQ)を, 従来の先行手法と比較して21.6%のFLOPで達成した。
ソースコードとモデルはhttps://github.com/hustvl/LKCell.comで公開されています。
関連論文リスト
- CausalCellSegmenter: Causal Inference inspired Diversified Aggregation
Convolution for Pathology Image Segmentation [9.021612471640635]
深層学習モデルは、病理画像解析の分野で、細胞核セグメンテーションに有望な性能を示した。
本稿では,Causal Inference Module (CIM) とDiversified Aggregation Convolution (DAC) を組み合わせた新しいフレームワークCausalCellSegmenterを提案する。
論文 参考訳(メタデータ) (2024-03-10T03:04:13Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - A Novel Dataset and a Deep Learning Method for Mitosis Nuclei
Segmentation and Classification [10.960222475663006]
ミトコンドリア核数(Mitosis nuclear count)は乳癌の病理診断における重要な指標の1つである。
そこで本研究では,SCMitosisという2段階のミトーシスセグメンテーションと分類法を提案する。
提案モデルはICPR 2012データセット上で検証され、最高Fスコア値は0.8687である。
論文 参考訳(メタデータ) (2022-12-27T08:12:42Z) - MEDIAR: Harmony of Data-Centric and Model-Centric for Multi-Modality
Microscopy [9.405458160620533]
マルチモーダルなセルインスタンスセグメンテーションのための総合パイプラインであるMEDIARを提案する。
検証段階では時間予算を満足しながら0.9067F1スコアを達成する。
その後の研究を容易にするために、ソースコードとトレーニングされたモデルをオープンソースとして提供します。
論文 参考訳(メタデータ) (2022-12-07T05:09:24Z) - Efficient Approximate Kernel Based Spike Sequence Classification [56.2938724367661]
SVMのような機械学習モデルは、シーケンスのペア間の距離/相似性の定義を必要とする。
厳密な手法により分類性能は向上するが、計算コストが高い。
本稿では,その予測性能を向上させるために,近似カーネルの性能を改善する一連の方法を提案する。
論文 参考訳(メタデータ) (2022-09-11T22:44:19Z) - EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context
Aware Pseudocoloring [4.555723508665994]
ボリュームセルセグメンテーションのための小さな畳み込みニューラルネットワーク(CNN)を導入する。
我々のモデルは効率的で非対称なエンコーダ・デコーダ構造を持ち、デコーダにはほとんどパラメータがない。
我々のCNNモデルは,他の上位手法に比べて最大25倍のパラメータ数を持つ。
論文 参考訳(メタデータ) (2022-04-06T18:02:15Z) - Kernel Identification Through Transformers [54.3795894579111]
カーネル選択はガウス過程(GP)モデルの性能決定において中心的な役割を果たす。
この研究は、高次元GP回帰モデルのためのカスタムカーネル関数を構築するという課題に対処する。
KITT: Kernel Identification through Transformersを提案する。
論文 参考訳(メタデータ) (2021-06-15T14:32:38Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Split and Expand: An inference-time improvement for Weakly Supervised
Cell Instance Segmentation [71.50526869670716]
本研究では,分割マップのインスタンスへの変換を改善するために,2段階の後処理手順であるSplitとExpandを提案する。
Splitのステップでは,セルの集合をセグメント化マップから個々のセルインスタンスに分割し,セル中心の予測を導出する。
拡張ステップでは、細胞中心予測を用いて、小さな細胞が欠落していることが分かる。
論文 参考訳(メタデータ) (2020-07-21T14:05:09Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
マルチタスク学習パラダイムにおけるセルセグメンテーションのための新しい教師付き手法を提案する。
ネットワークの予測効率を向上させるために、領域とセル境界検出に基づくマルチタスク損失の組み合わせを用いる。
検証セットで全体のDiceスコアが0.93であり、これは最近の教師なし手法で15.9%以上の改善であり、一般的な教師付きU-netアルゴリズムを平均5.8%以上上回っている。
論文 参考訳(メタデータ) (2020-05-19T11:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。